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ABS TRACT 

An analysis, by functional calculus, of a c lass  of nonlinear sys tems is presented. 
The class  of nonlinear systems that a r e  analyzed includes al l  those analytic systems 
that a r e  characterized by nonlinear differential equations. Applications of this analysis 
a r e  shown for  several  actual nonlinear physical sys tems that a r e  analytic. 

Loosely speaking, an analytic 
system is any system with these three  properties: (i) It is deterministic. (For  a given 
input signal, the system can have one and only one corresponding output signal.) (ii) It 
is time-invariant. (iii) It is "smooth.1t (The sys tem cannot introduce any abrupt o r  
switchlike changes into its output. All such changes in the output must be caused by the 
input rather than the system.) 

Given a nonlinear differential equation, the conditions a r e  shown under which it 
character izes  an analytic system. Given an analytic sys tem character ized by a nonlin- 
e a r  differential equation, it is shown how that sys tem can be analyzed by an application 
of functional calculus. Specifically, an inspection technique is developed whereby a 
Volterra functional power s e r i e s  is obtained f o r  that sys tem's  input-output t r ans fe r  
relationship. Applications a r e  given for  (i) the demonstration of a pendulum's nonlin- 
ea r  resonance phenomenon; (i i)  the computation of a shunt-wound motor 's  response t o  
white noise excitation; ( i i i)  the computation of a varac tor  frequency doubler's transient 
response; and (iv) the determination of the stability of a magnetic suspension device that 
is now being used in space vehicles. Experimental confirmation of the las t  stability 
determination is treated in an appendix. 

The precise  definition of an analytic system is given. 
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I. INTRODUCTION 

We shall present an analysis, by functional calculus, of a c lass  of nonlinear s y s -  

tems. 
systems that a r e  characterized by nonlinear differential equations. 
applications of this analysis to several  actual nonlinear analytic physical systems. 

The class  of nonlinear systems which we shall analyze a r e  all those analytic 
We shall also give 

The precise definition of analytic systems wi l l  be given. For  the time being, 
we shall say that analytic systems are all those systems having the three following 

properties: (i) Analytic systems a r e  deterministic (that is, for a given input they may 
have one and only one corresponding output). (ii) Analytic systems are time-invarient 
(that is, the system's  inputs and outputs co-translate in time). 
a r e  "smooth'' (loosely speaking, by smooth we mean that the system cannot introduce 
an abrupt or  switchlike change into the system's  output. If such a change is present in 
the system's  output, then it must be due to a s imi l a r  switchlike change in the system's  
input o r  to one of the derivatives of the system's input). 

Given an analytic system characterized by a nonlinear differential equation, we 
shall  show how that system can be analyzed by an appiication o i  iunctionai calculus. 
the other hand, given a nonlinear differential equation, we shall show the conditions 
under which it characterizes an analytic system. 
nique whereby a Vol te r ra  functional power series soht ion for that system's  input-output 
t ransfer  relationship can be obtained from its characterizing equation by inspection. 
We shall  then show some applications of that functional solution of the system's  input- 
output relationship. 
nonlinear resonance phenomenon, computation of a shunt-wound motor 's  response to 
white noise, computation of a varactor frequency doubler's transient response, and the 
determination of the stability of a magnetic suspension device that is now being used in 
our nation's space vehicles. 

The analysis of nonlinear systems by functional calculus is not new; Wiener intro- 
duced it, in 19423' The Volterra s e r i e s  solution of nonlinear differential equations is 
not new; Volterra did so  in the nineteenth century?' Barrett  gave a solution technique 
for  a certain kind of nonlinear differential equation, in 1957.1 In 1963, Liou gave a pro- 
cedure that wi l l  often (but not always) yield a solution for another type of differential 
e q ~ a t i o n ? ~  Van Trees,  in 1964, solved the particular differential equation characteriz - 
ing a phase-locked loop?1 The technique that he used there parallels many of the essen-  
t ial  features  of the inspection technique that we present here. 

(iii) Analytic systems 

On 

Specifically, we shall show a tech- 

These applications will  include: the demonstration of a pendulum's 

Since many of the l a w s  of physics a r e  most readily stated by a differential equa- 
tion, it is quite natural to specify a system's  behavior by a differential equation. 
system is then said to be characterized by that differential equation. 
cations, however, a functional description (the Volterra s e r i e s  solution of the charac- 
terizing differential equation) is more useful. 

The 
F o r  some appli- 

For example, i f  we want an explicit 

1 



expression for a system's  output o r  i f  we wish to calculate the properties of a system's  
output when its  input is stochastic, then the functional description is more  desirable 
than the differential equation description. 
inspection technique that we shall present la ter)  whereby a functional characterization 
of a system may be obtained f rom i t s  differential equation characterization, we now 
present two examples - a linear lowpass fi l ter  and an associated nonlinear lowpass 
filter. 

1.1 LINEAR LOWPASS FILTER 

As  an illustration of a method (but not the 

Consider the lowpass filter shown in Fig. 1. If we a r e  primarily interested in the 
relation of this f i l ter ' s  external variables (the voltages x and y) ra ther  than in i t s  inter-  
nal variables (such as the current i), then we can express  that relation by a differential 
equation 

o =  . 2 + y - x  d 
dt 

and the boundary condition of initial r e s t  

y(t) = o until x(t) f 0. 

: I" +FT X - 

- 
CIRCUIT 

+FT X - 

- 
CIRCUIT 

Fig. 1. Linear lowpass filter. 

Another way in which we can express  that relation is by the convolution of x with h, the 
f i l ter ' s  impulse response. That is, 

= J-GT) X(t - 7)  d7.  

Equation 3 shows that the f i l t e r ' s  output y is a functional of i t s  input x. 

2 
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1 . 2  NONLINEAR LOWPASS FILTER 

Consider the lowpass filter, squarer ,  lowpass f i l ter  system shown in Fig. 2. 

can express  the relation of its input voltage x to its output voltage z by an integro- 
differential equation 

We 

X m  L I N E A R  2 SQUARER 
S Y S T E M  

i 

00 
dz 
dt 0 = -  + z - ( [ u - ~  (7) exp ( -7 )  x (t - 7)  

y2 L I N E A R  - Z 
S Y S T E M  

(4) 

J 
-bo 

(where u - ~  is the unit step function), and the boundary condition of initial res t  

(5)  z( t )  = o until x(t)  # 0. 

CIRCUIT 

Fig. 2.  Nonlinear lowpass filter. 

We can also express  that relation in a form analogous to  Eq. 3. That is, 

n 

z( t )  = ho + hl (T1) x(t - T1) dT1 J 
-00 

00 

h2 (T1, T 2 )  X ( t  - T1) X ( t  - T 2 )  dT1 d72 + . . . . + JJ 
-00 

Equation 6 is called a Volterra functional power se r i e s  and the constant ho, together 

with the functions hl, h2, h3, . . . , a r e  called its Volterra kernels. 
duced the use of such a Volterra s e r i e s  to express  the input-output t ransfer  relation of 
a nonlinear system in 1942. 

Wiener intro- 

39 
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Not all nonlinear systems have input-output t ransfer  relations that can be 

expressed by means of a Volterra series (Eq. 6). 

which nonlinear sys tems can and cannot be expressed by Eq. 6. 

we shall  merely s ta te  that the system shown in Fig. 2 is expressible by Eq. 6 and 
show how we can solve for  its Volterra kernels. 

We shall  deal with the question of 
For  the t ime being, 

A major topic of this report  will be the development of a technique whereby the 
Volterra se r ies  description of a nonlinear system can be found f rom its differential 

equation o r  integro-differential equation description by inspection. In order  to i l lus- 
trate this technique we shal l  solve for  the Volterra series description of the sys tems 
shown in Fig. 2 ,  but not by inspection. In order  to make this illustration clearer, we 
shal l  f i r s t  use this technique to solve for  the convolution integral  description of the 

l inear system shown in Fig. 1. In this case, the technique that we shal l  use will be 
unorthodox and more  tedious than the usual well-known methods, but it will help to i l lus- 
t ra te  the use of the same  technique on the nonlinear system. 

Consider Eq. 3, where h is unknown. By differentiating 

9 = h( l )  (t) (*<) x(t) dt 

00 

= 1 h ( l )  (7) x(t - 7)  d7, 

-00 

w e  obtain 

(7) 

where h ( l )  is the derivative of h. Any input x is related to itself, through the unit im-  
pulse, uo, in the form 

~ ~ ( 7 )  x(t - 7 )  d7. 

-00 

When Eqs. 3, 7, and 8 a r e  substituted in Eq. 1, the resul t  is 

-00 
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Equation 9 must be true for any x. 
zero. That is, 

This implies that the entire kernel of Eq. 9 is 

0 = h(') (7) + h(7) - u0(7) , all 7. 

If we take the bilateral Laplace transform of Eq. 10, we get 

0 = ( S  + 1 )  H(s) - 1, 

where 

h(7) exp ( - s 7 )  d7. 

-00 

Solving Eq. 11 for H, we get 

1 
H(s )  = s+l. 

By taking the inverse transform of Eq. 13 and taking into account the boundary condi- 

tion (Eq. 2),  we find that the system's  impulse response is 

h(t) = u-l( t )  exp (-t). (14) 

We have thus found the desired function h so  that the system shown in Fig. 1 can 
be expressed by means of Eq. 3, the convolution integral. 
logous method by which we shall  find the Volterra kernels whereby the system shown 
in Fig. 2 can be expressed by means of Eq. 6. 

We shall  now show an ana- 

Consider Eq. 6. By differentiating, we can obtain 

-00 

+ h(O'OJ1) (7 7 7 ) x(t - 71) x(t - 72) x(t - 73) - d71 d72 d73 + . . . 3 1' 2' 3 ] 
(15) 

5 



th 

P' 

where h (i'jJk'' ' ) is the ith partial derivative with respect to  the f i r s t  argument, j 

partial derivative with respect to the second argument, and so  on, of the function h 
P 

When Eqs. 6 and 15 are substituted in Eq. 4, the result  is 

00 

0 = h 0 + f [ h l ( T 1 )  f h y )  ( T 1 ) ]  x(t - T1) dT1 

Equation 16 must hold for any x. 
Eq. 16 is zero. That is, 

One way in which this can be true is if  each kernel in 

0 ho (17) 

Equations 18 - 20 a r e  analogous to Eq. 10. 
and can be solved with the aid of the multivariate bilateral  Laplace t ransform? It is 

They a r e  multilinear, ra ther  than nonlinear, 

6 



P 

-00 

The transformation of Eqs. 18 - 20 yields 

1 
(SI  + W S 2  + 1) 

0 = (sl + s + 1) H2(s1,s2) - 2 

. . .  - S 7 ) dT1 ... dTk. k k  

(21)  

0 = (sl + s2 + . . . + sk + 1) Hk(s1,s2, . . . , sk); k = 3,4,5, . . . . (24) 

By solving these equations for t h e  kernel transforms, taking the inverse transform, 
and taking into account the boundary condition (Eq. 5), we find that all of the kernels 
except h a r e  zero. The transform of h2 is 2 

1 
H2(S 1 ’s2) = (SI + l)(s2 + l ) ( S l  + s2 + 1) 

and the second-order kernel is 

where m is the max function 

It can now be verified, by direct substitution in Eq. 4, that the input-output re la -  

tion of the system shown in Fig. 2 is 

-00 

Equations 4 and 28 both represent the input-output t r ans fe r  relation of the nonlinear 
Depending upon the application, either representation has some advantages system. 

over  the other. In the case of stochastic inputs, Eq. 28 is more tractable than Eq. 4. 

One would normally write Eq. 11 by inspection of Eq. 1. We shall  show a tech- 
nique whereby Eqs. 17, 22, 23 and 24 could have been written by inspection of Eq. 4. 

7 



c 
11. FUNCTIONALS AND SYSTEMS 

We shall develop an inspection technique for finding Volterra s e r i e s  solutions to  
those nonlinear differential equations that characterize analytic systems.  
summarize the results of system theory and functional calculus which we shall  need to  
use. 

We shall now 

2 . 1  FUNCTIONALS 

Functionals a r e  somewhat like functions. Functions assign points to  points but 
functionals assign points to functions (that is, functionals assign points to the way in 
which points a r e  assigned to points). Volterra, the father of functionals, puts it that the 
"definition of a functional recal ls  especially the ordinary general  definition of a function 
given by Dirichlet". 33 The formal definitions of functions and functionals presuppose 
se t  theory? An informal definition 

Definition of a Functional. 
tional, x is the argument of F,  and F[x] is the value of F for x. 

of a functional is the following. 

If F assigns a point F[x] to a function x, then F is a func- 

Figure 3 i l lustrates the definition of a functional. Each function is a bundle of lines 

going from i t s  domain to i t s  range. 
lines (function) and goes from it to some point in a s e t  of points E.. 
these s t r ings is a functional F. 

A str ing is tied around each of these bundles of 
The bundle of all 

Fig. 3. Illustration of a functional. 

8 



2 . 2  SYSTEMS 

A system associates pairs  of signals (a signal is a function of time). An informal 
definition of a deterministic system follows. 

Definition of a Deterministic System. 
deterministic system, x is the input to S, and y is the sys t em ' s  output for x. 
of inputs to S is called the system's  input ensemble. 

If S assigns a signal y to  a signal x, then S is a 
The s e t  

The set  of outputs of S is called 
the sys t em ' s  output ensemble. 

Not all systems a r e  deterministic systems. F o r  example, the communication 
channels that a r e  studied in information theory, which for input x. can have output y .  

1 J 
with probability p(y . I xi), a r e  not deterministic systems:' Such systems might be called 

probabilistic systems. 
systems, depending upon whether or  not they are always started from the same  state. 

3 
Also, systems with hysteresis may o r  may not be deterministic 

The input-output reldtions of deterministic systems can be expressed by a func- 
For  example, if  a system is linear, deterministic, time -invariant, realizable tional. 

and stable, then the value of i t s  output y at a t ime t is the convolution of i ts  input x with 
i t s  impulse response h. That is, 

00 t 
(29) 

0 -00 

Equation 29  shows that at any given time to the system's  output is the value of some 
functional Lo for x. That is, 

On the other hand, Eq. 29 also shows that for any given input signal xo the system's  
output is the value of some function Lx at t. That is ,  

0 

Equations 30 and 3 1  together show that there is an L which is both a function and a 
functional such that the value of the system's  output for  x at t is 

Equation 29  is more specific than Eq. 32 as to the way in which the sys t em ' s  input 
influences i t s  output. 
domain of x pertains to y(t). 
function which influences the value of a functional, we s h a l l  do so by the notation 

F o r  example, Eq. 29 shows that only the interval ( -w, t )  of the 
Whenever we wish  to explicitly exhibit the domain of a 

10,33 
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Equation 33  is read a s  "y is the value of the functional F for the function x from the 
interval (a,b) of i t s  domain". 

With the added notational explicitness of Eq. 33, for the l inear system we can now 
write 

t 

y(t)  = J x(7) h(t - 7 )  d7 = L 

-00 

( 3 4 )  

The input-output relations of nonlinear systems can aA;o be expressed by func- 

i Xn) 
tionals. Consider any deterministic system S with input signal ensemble X = 

and output signal ensemble Y = , as is shown in Fig. 4. Since S is deterministic, 
for any given input signal xk E X the sys tem's  output can be one and only one signal 

yk E Y. Thus the value of any deterministic sys tem's  output signal y at a t ime t is ,  
by definition, a functional of that sys tem's  input signal x. That is, 

where the interval (a(t) ,P(t))  is any common interval of the domains of a l l  the xk E X 

such that each xk that assigns a distinct yk(t)  is distinct (in other words, the interval is 
long enough s o  that we can tell  which input signal it is). 

If system S is time-invariant as well as deterministic, then there  are input-output 

pairs  of signals, (x,y) and (x , y  ), where x,x E X and y,yT E Y, such that for any T T T  T 

Equation 35 shows that the value of the sys tem's  output at a t ime to for the input xT 
is 

10 



. 0 . . 
0 

INPUT OUTPUT 
ENSEMBLE - ENSEMBLE 

Fig. 4. Deterministic system. 

* 
When we substitute Eqs. 36 and 37 in Eq. 38 and choose T = t - to, then the result  is 

where a = a(to) - to, and b = P(to) - to. 

instant of time, then we know that system's  output at any t ime for any input. 
Referring to Fig. 5, it  is clear  why (a) the interval 

(a,b) is called the system's  memory; (b) i f  b > 0, then the system is unrealizable; (c) if  

b ,< 0, then the system is realizable; and (d) if  a = b = 0, then the value of the system's  
output at  time t depends exclusively upon the value of the system's  input at time t. 
is, the value of the system's  output is a function (rather  than a functional) of i ts  input. 
Such a system is called a no-memory system. 

That is, i f  we know a time-invariant deterministic system's  functional at  some 

Figure 5 i l lustrates Eq. 39.  

That 

*Equation 34 is not a contradiction of Eq. 39.  Equation 34 could have been written 

0 

11 



I- L 

z z 
PAST cn W FUTURE PAST FUTURE 

{ t t + b  1 - 1  

Fig. 5. Time-invariant deterministic system. 

There are  two resul ts  about finite memory, time-invariant, deterministic systems 
that can be shown from Eq. 39: input signals that a r e  constant in time yield output 
signals that a r e  also constant in time; and input signals that are periodic in time T 
yield output signals that a r e  also periodic in time T. 
"divide-by" circuits, etc. a r e  not systems that a r e  deterministic, time-invariant, and 
finite memoried (the last  systems because their outputs can contain frequency com- 

ponents that a re  subharmonics of their  input signals 

2 . 3  CALCULUS OF FUNCTIONALS 

Thus oscillators, counters, 

41  
). 

Volterra and others, have developed a calculus of functionals. Continuity for  func- 

tionals has been defined34 The f i r s t  functional derivative, 

and the nth functional derivative, 

of the functional 

have been defined35 Volterra has shown a theorem f o r  analytic functionals which is an 
analog of Taylor's theorem for  analytic functions?6 Volterra 's  theorem is 

12 



b 

. . . ~ ( 7 ~ )  dT1 . . . dTn + . . . (40) 

F o r  our applications, we are interested in Eq. 40 when the function xo is zero. 
That is, 

b 

. . . ~ ( 7 ~ )  dT1 . . . d7n + . . . (41) 

2 . 4  ANALYTIC SYSTEMS 

Definition of an Analytic System. 
system S (see Eq. 39) is analytic about zero input at some time to, then S is an analytic 
system. 

If the functional of a time-invariant deterministic 

Equations 39 and 41 can be used to show that the value of the output y of an analytic 
system S for input x is 

b 

a 
b 

. . . x(t + T ~ )  d71 . . . dTn + . . . . 

13 



For our  purposes, much of the notation in Eq. 42 is unnecessary. For example, 

s [(0),(t0)] is merely a constant and S(n)[(0),(tO),(Tl), . . . , ( T n ) l  is merely a symmetr ic  
function on n variables.  
others,  w e  shall write in place of Eq. 42  that the value of the output y of an analytic sys-  

tem II for input x is 

For  notational ease and in order  to  conform with the works of 

= ho + I hl(T1) x(t - T ~ )  dT1 + . . . 
-m 

hn(T1, . . . , T ~ )  x(t - T ~ )  . . . x(t - Tn) dT1 . . . d7n 
* . .  + J -*J 

-00 

+ . . .  , (43)  

where 

r , b  
ho = S L(O),(t)] 7=a  , (ho  is a constant) 

and 

b 

T , T ~ ,  . . . , r n = a  
. . . , (-T,)] 

n 

k =  1 

(hn is a function of n variables),  

(44) 



a 

with 

indicating the operation of symmetrization of the function f in i t s  n arguments4' This 
is accomplished by summing the values of f at all n! possible permutations of i ts  n 
arguments and dividing the sum by n! . 
duced because S(n) is symmetric in i t s  n arguments (this is a property of functional 
derivatives), but hn need not be symmetric in i t s  n arguments. 
s a r y  and sufficient condition such that like order intergrals in Eqs. 42 and 43 have the 

same  values for all signals x. 
the dummy variables of integration. ) 

This symmetrization operator must be intro- 

Equation 45 is a neces- 

(The symmetrization operator corresponds to permuting 

We shall  r e f e r  to Eq. 43 as a Volterra series and call  the constant ho and the func- 
* 

tions hn the kernels of the Volterra series: We shall also have need to r e f e r  to sepa- 
ra te  t e r m s  within the Volterra series. For this purpose, when we say "the kth order  
t e r m  in the Volterra series",  we  mean 

yo(t) = HO[x] = ho, when k = 0, (46) 

and when k #' 0, 

-00 

(47) 

2. 5 COMBINATIONS OF ANALYTIC SYSTEMS 

The combinations of analytic systems have been studied extensively. 3,16,42 We 

shall  now summarize those resul ts  that we shall use. 
stated in the frequency domain than in the time domain, hence we shall define the multi- 
variate bilateral Laplace transform of a function of k variables. 

These resul ts  a r e  more easily 

2 

k' where sk = uk + jw 

*Of course,  ho is not a kernel; however, it  would be awkward to forever have to r e fe r  to 
llhO and the kernels". 

15 
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Consider three analytic systems, F ,  G, and H, whose outputs are p, q, and r. 
is, by Eqs. 43, 46, and 47, when the input to  these systems is x, their  outputs are 

That 

00 

p(t) = F[x] = Fk[Xl 

k= 0 

w 

00 

r ( t )  = H[x] = c Hk[Xl’ 

k= 0 

(49) 

Additive Combination. F f G = H (see Fig. 6 ) .  

If the outputs of two analytic systems, F and G, are added, then their sum, r = p + q, 
4 is the output of an analytic system H and 

Fig. 6 .  Additive combination of analytic systems. 

Multiplicative Combination. F * G = H (see Fig. 7) .  

If the outputs of two analytic systems F and G are multiplied, then their  product, 
5 r pq, is the output of an analytic system H and 

n 

m=O 

16 



Fig. 7. Multiplicative combination of analytic systems. 

Cascade Combination. G(*)F = H (see Fig.  8). 

If the input to an analytic system F is x, and i t s  output p p = F[x]) is the input to an ( 
analytic system G, then i t s  output q q =  G[p] = G [Frx]]) is the output of an analytic 
system H and" 

Case 1: If G is linear, then 

Hn(sl, . . ., sn) = Fn(sl, . . . , sn) G1(sl + .  . . + sn). (54) 

Case 2: If F is linear, then 

6 
Case 3: If neither F nor G is linear, then see Brilliant for the combination formula. 

Fig. 8. Cascade combination of analytic systems. 

Feedback Combination. (See Fig. 9. ) 

The feedback combination of analytic systems is an analytic system (except when 
7,17,43 the feedback makes the system unstable). See Brilliant, George, and Zames. 

2 . 6  GEORGE'S ASSOCIATION TECHNIQUE 

The remaining result  of functional calculus that we shall  use but have not yet 
introduced is George's frequency association technique! 
ing, by inspection, the transforms of signals that a r e  the outputs of analytic systems. 

It is a technique for  evaluat- 
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Fig. 9. Feedback combination of analytic systems.  

The kth-order t e r m  of the sys tem's  output (see Eq. 47) has a multilinear co r re s -  
pondent. It is 18 

-00 

(56) 

The transform of the multilinear correspondent is a product. 

y(k)(s l> * * > sk) = Hk(S1> * * * 9 sk) x(sl) . . * x(sk)* (57) 

An example of the application of George's frequency association technique follows. 
If 

then 

If 

18 



then 

BC(n + m - 2)! 
Y,(S) = n+m- 1 (n - l)!  (m - l)! (s + b + c) 

In our applications of George's frequency association technique it wi l l  become clear  
that the evaluation of the transforms of the output signals of analytic systems is straight- 
forward as long as the transforms of the multilinear correspondents have partial  f rac-  
tion expansions. 

2 . 7  MULTI-INPUT SYSTEMS 

The extension of these results to multi-input systems is straightforward. The value 
of the output y of an analytic system whose simultaneous input signals a r e  u, v, w, . . . 
is 

y(t) = H[u,v,w, . . . ] 

0 0 0 0 0 0  00 

u(t - T1) . . . U(t - 'Ti) V(t - Ti+l) . . . V(t - Ti+j) W(t - 7i+j+l) . . . 

w(t - 7i+j+k) . . . dT1 d ~ ~ .  . . . (62) 

Here, it  must be understood (as a convention) that a zero subscript obviates the cor-  
responding integrations. 
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111. VOLTERRA SERIES SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS 

Extending the results summarized in Section 11, we shall show which differential 
equations characterize analytic systems, and present an inspection technique for find- 
ing the Volterra s e r i e s  solutions to those differential (or for that matter,  integral o r  
integro-differential) equations that characterize analytic systems. This technique's 
rationale may be stated: (i) If a differential equation characterizes an analytic system, 
then there  is  a Volterra s e r i e s  satisfying that differential equation. (ii) Because the 
system combination theorems show that the addition, multiplication, or analytic opera- 
tion (the cascade) upon a Volterra s e r i e s  yields a Volterra ser ies ,  then i t s  substitution 
in the differential equation yields a Volterra ser ies .  
equal, then the symmetrization of their  like order  kernels must be equal. 

(iii) If two Volterra s e r i e s  a r e  

The justification of the last  statement follows: Consider two Volterra series that 
a r e  equal for all inputs. That is, 

F[x] = G[x], all  x. 

Equation 47 shows that 

Hk[X x]  = A k Hk [ X I  

An  Fn [ X I  A m  Gm [ X I  

n=  0 m= 0 

(63 )  

(64) 

for any constant A.  
Equation 65 equates two power s e r i e s  in A. F o r  two power s e r i e s  to be equal, 

their  like-order coefficients must be equal. That is, 

Fk [ X I  = Gk [ X I ,  all x. (66) 

But Eq. 45 shows that the kernels of both of these k-order functionals, when SYm- 

metrized, equal the same k- order  functional derivative!' Thus 
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The application of this technique wi l l  be illustrated by examples. 

Example 1 

Consider a system whose input is x and whose output y obeys the differential 
equation 

& = 1 + -  dx 
dx dt ’ 

and the boundary condition of initial res t .  That is, 

y(t) = o until x(t) # 0. (69) 

Secause the system characterized by Eqs. 68 - 69 is an analytic system (we shall 
postpone the question of how w e  know that it is an analytic system), then there is s ~ m e  

Volterra s e r i e s  H such that 

y(t) = H [ X I  = H~ [XI, any x. (70) 

k= 0 

The t e r m  dy/dx in (68) is not the result  of an analytic operation upon y (Eq. 70) s o  
Eq. 68 is not yet in the form whereby we can exploit the system combination theorems. 
Since 

Eq. 68 can be rewritten 

g =  [ 1 + $ ]  2. 
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All  terms in  Eq. 72 a r e  the result  of analytic operations upon either x o r  y. 

Specifically, dy/dt is the result  of a cascade of system H with a l inear system whose 
1-order (its sole term) kernel’s transform is s. (See Fig. 10.) The two other t e r m s  
in  (72) a r e  trivial Volterra s e r i e s  in  x. (See Figs. 11 and 12.) 

Fig. 10. Cascade synthesis of dv/dt. Fig. 11. Synthesis of dx/dt. 

Fig. 12. Synthesis of the square of dx/dt. 

Thus, with the aid of the system combination theorems of Section I1 and Eq. 67, we may 
write f rom (72) by inspection 

(sl + s2) H2(s1, s2) = s s 3 l 2  ( ‘ 1 J  ‘2) Sym 
(74)  

(sl +. . . +  sk) Hk(s l , .  . ., sk) = 0; k = 3, 4 , .  . . . (75) . . . I Sk) 
Sym 

By considering the boundary condition (69) when x = 0,  we can add that 

Ho[x] = 0. 
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% 
F o r  solutions to  Eqs. 73 - 75, let us  choose the remaining kernels to  be 

x o - - o  

Hk(sl , .  . . , s ) = 0; k = 3, 4 , .  . . . (79) k 

Y 

These solutions a r e  amenable to synthesis by another application of the system 

combination theorems. (See Fig. 13. ) The time-domain expression for y can be 

written by inspection of this synthesis (Fig. 13). It is 

t 

= x(t) + 1 (2)' dt. 

Fig. 13. Synthesis of H. 

The observation that (80) is indeed the solution to  (68) and (69) is trivial. Example 
1 w a s  not chosen to  show the solution of a difficult differential equation, ra ther  it w a s  
chosen t o  be an  easy illustration of the solution technique. 
t r ivial  differential equation is used follows. 

An example in which a less 

:$The "choice" of kernels for  solving Eqs. 73 - 75 is irrelevant. Any kernel that 
sat isf ies  these equations will ,  when substituted in Eq. 70, yield the same value for y. 
The only difference in the answers w i l l  be the way in which the integration over the 
dummy variables takes placefo 
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Example 2 

Consider a system whose input is x and whose output is y which obeys the 
differential equation 

3 2 d 3 
X [ l + & ]  Y-g[l+x] y = 2 x  (81) 

and the boundary condition of initial res t .  That is, 

y(t)  = o until x(t) # 0. (82) 

Because the system characterizedbyEqs. 81 - 82 is an analytic system (we shall 

postpone the question of how we know that it is an analytic system), there is some 
Volterra se r ies  F such that 

c F k ( X I J  x* 
y(t)  = F [ x ]  = 

k= 0 

(83 )  

Equation 81 is already written in a form such that all t e r m s  a r e  the resul ts  of analytic 
operations upon either x o r  y. Hence, by inspection, we write 

3 2 Fo - s1 [ l  + 01 1 [ l  + 01 Fo = 0 (84) 

(85) 

(86) 

3 1 (1 + s2 + . . . + s ~ + ~ ]  Fk (s2, .. ., s ~ + ~ )  
k+ 1 (sl, . . . , s 

2 - SI  [ 1 + s 2 + .  . . + s ~ + ~ ]  Fk(s2.. . . , s ~ + ~ )  1 0; k = 3 , 4 , .  . . . (87) 
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I . 
I 

For Eqs. 84, 85, and 87 we choose the solutions 

O = F O = F  = F  = F  = . . .  . 1 3 4  

But for (86) we must choose an F2 such that 

2 
(1 + s2 + s3) (1 - s1 -b s2 + s3) F2 (s2, s3) 

(sl, 52’ s 3 )  

An F2 that satisfies Eq. 89 can be found quickly if we res t r ic t  our choice of F2 to 
those that a r e  symmetrical. That is, 

F2 (sa, sb) = F (s 2 b’ a s ), all  sa, sb. 

When we evaluate Eq. 89 at (sl, s2, s3)  = ( 0 ,  0, O ) ,  the result  is 

F2 (0 ,  0 )  = 2. 

When we evaluate Eq. 89 at  (sl, s2, s ) = (s, 0, O ) ,  the result  is 

+ [l + sI2 [ l  + S ]  F2 ( 0 ,  S )  = 2. f 

When Eqs.  90 and 91 are substituted in Eq. 92, then the result  is 

s + 2  F2 (0 ,  s )  = F2 (s, 0) = 
( s  + 1) 

When we evaluate Eq. 89 at (sl, s2, s 3 )  = (sl, s2, O),  the result  is 

(90) 

(93) 
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2 2 
(1 + s2) (1 - s1 f s2) F2 (s2, 0 )  + (1 + sl) (1 - sl  + s2) F2 ( 0 ,  s2) " I  

2 2 
(1 - s1 + s2) F2 (0 ,  s2) + (1 + sl) + ( I  + s2) (1 - s2 + S1) F 2  ( 0 ,  

2 + (1 + s1 + s2) (1 + sl + s2) F2 (s l ,  s2) 

2 + (1 + s1 + s2) (1 + s1 + s2) F2 (s2, sl )  

When Eqs. 90 and 93 a r e  substituted in Eq. 94, then the result is 

s1 + s2 + 2 

(sl + 1) ( s 2  '+ 1) (sl + s2 + 1) 
F2 (S1' s2) = 2 '  

(94) 

(95) 

It should be clear  that the method that we have just used to get Eq. 95 f rom 

Eq. 89 is general. 

equation with more than k frequencies, then that kernel 's  transform can be found in 
k + 1 steps; namely by evaluating that equation at  ( O , O , O ,  . . .), (s1,0,O,. . .), (sl, S2,0,. . .), 

That is, whenever a k-order kernel transform is in a constraint 

. . . , and (sl, s2,. . . sk, 0 , .  . .) .  

The Inverse transform of Eq. 95 is 

where - m and m a r e  the minimum and maximum functions. They a r e  

26  

(97) 

(98) 



. 
c 

When the expression for f2  (the only nonzero kernel) is substituted in Eq. 83, the 

result  (the solution to  Eqs. 81 - 82) is 

-00 

0 0  

A frequency-domain synthesis of this system (from Eq. 95) is shown in Fig. 14. 

Upon examination of Fig. 14, two qualitative observations about the system's  behavior 
may be made by inspection: 

1" 2" 1" 

Fig. 14. Synthesis of F. 

2 
(i) 

(ii) 

If x is a low-frequency signal ( 1 s 1 < < l ) ,  
If x is a high-frequency signal ( 1 s I > > 1) of narrow bandwidth (small  com- 

then y = 2x . 

pared with l),  then y is approximately twice the low-frequency component of the square 
of the integral of x. 

Both of these observations a r e  simple by-products of the Volterra s e r i e s  solution 
of the system characterized by Eqs. 81 - 82. These equations completely describe this 
system but neither observation (i) nor (ii) were ,  a priori, obvious from them. Thus we 
s e e  that the Volterra s e r i e s  description of a system may well provide more  insight into 
the behavior of that system than i t s  differential equation description. 

In the two examples considered thus far, the extraction of like order  t e r m s  in the 
kernel t ransforms from the system's  characteristic equation gave equations that were 
independent. 
equations in the kernels. 
formulation of a recursive formula for the kernel transforms. 

This is not usually the case. The usual result is a set  of simultaneous 
In this event, solution for the kernel transforms involves the 

An example follows. 

Example 3 

Consider a system whose input is x and whose output is y which obeys the differen- 
t ial  equation 
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y + g [ 2 y + l ] x = y  2 [ x - 1 1  
(100) 

and the boundary condition of initial res t .  That is, 

y(t) = o until x(t) # 0. (101) 

Because the system characterized by (100) and (101) is analytic, for  a certain c lass  of 
input signals (we shall postpone the questions of which c l a s s  of input signals and how we 
know that it is an analytic system for them), there is some Volterra s e r i e s  G such that 

y(t) = G [ X I  = Gk [XI, all  x in a class.  

k= 0 

(102) 

Equation 100 i s  already in such a form that all t e r m s  a r e  the resul ts  of analytic opera- 
tions upon either x o r  y. Hence, by inspection, we may write 

(103) 
G + O - O = O - G o  2 

0 

(104) G1(sl) t slG1(sl) - (2G0 t 1) 1 = Go 2 - 2 GOG1(sl) 

[ k-1 

(1 05) 
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, 
Equation 103 can be rewritten as 

(Go + 1) Go= 0. 

Equation 104 can be solved for  G1. The result  is 

(Go + 

('1) = s1 + 2 Go + 1. 

The highest order  t e r m  in (105) can be isolated and solved for. The result  is 

Syn1 
(S1> . . . , 'k) 

(S1> Sym . . . , Sk) { Gk (S1, . . . , Sk) 1 = 

k- 1 

sl+. . . +s + 2G0 + 1 k 

k = 2 , 3 , 4  ,... . (108) 

Equation 108 is a recursive formula for G 
G2; given G 

values of Go correspond to the two distinct s ta tes  possessed by that system which obeys 
Eq. 100. They are the -1 State (denoted by a single prime ( I )  ), and the " 0  State" 

(denoted by a double prime ( ' I ) ) .  

That is, given Go and G1, it constrains k' 
G1, and G2, it constrains G3; and so  on. 0' 

Equation 106 allows us  two choices of values for Go, 0 and -1. These two distinct 

. 
-1 State I .  

If, for  solution to  Eq. 106 we choose 

Gb = -1, 

then the solution t o  Eq. 107 is 

G; (sl) = 0 
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and, for Eq. 108, we may choose the solutions 

(111) s ) = 0; k =  2,3,  ... . Gk (sl , .  . . , k 

The substitution of the kernels whose t ransforms a r e  given by Eqs. 109 - 111 in 
Eq. 102 yields the Volterra s e r i e s  G' for  the system's  -1 state. It is 

y(t) = G' [ X I  = -1. (112) 

That is, in its -1 state, this system's  output is y = - 1, regardless  of the input x. 
For input signals x such that 

(113) 

the output s i g n a l  y ( t )  = - 1, all t, is indeed a solution to  the sys tem's  character is t ic  
equations (Eq. 100  - 101). For  inputs that do not begin until t ime T, that is, i f  

x(t) = u - ~  (t - T)  x(t) , all t, (114) 

the boundary condition of initial res t ,  Eq. 101, requires  that 

y(t) u - ~  (t - T) y(t), al l  t. (115) 

In order  to  satisfy (115) , we must choose Go = 0. 

begin until time T, the system must be in i ts  0 s ta te  for at least  the t ime interval 
Thus, for input signals that do not 

( -06, TI. 

" o State ' I .  

If, for solution to  Eq. 106, we choose 

G: = 0, 

then the solution to  Eq. 107 is 

(117) 
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and, f o r  Eq. 108, we may choose the solutions 

; k = 2 , 3 ,  ... . 1 
(sl + 1) . ..(sk+ 1) GK (sl,.  . . , s ) = k 

The substitution of the kernels whose transforms a r e  given by Eqs. 116 - 118 in 

Eq. 102 yields the Volterra s e r i e s  G" for the system's  0 state. A frequency-domain 

synthesis of this state of the system is shown in Fig. 15. A closed form of that syn- 

thesis is shown in Figs. 16  and 17. Figure 1 6  uses  feedback, Fig. 18 uses one linear 
but memoried system and one nonlinear no-memory system. 
syntheses yields 

Inspection of any of these 

exp (-7) X (t - 7) d7 

y(t) = G" [XI = 
0 

1 - i e x p  (-IT) x (t - a ) d a  

0 

Fig. 15. Parallel  synthesis of G". 
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Y 
1 

s +1 
- x o  - 

Fig. 16. Feedback synthesis of G". 

Z 
f ( z ) =  - = Y  1 - z  

Fig. 1 7 .  Cascade synthesis of G". 

Direct substitution w i l l  verify that Eq. 119 does indeed solve the system's  character-  
ist ic equations, Eqs. 100 - 101. 

While inputs that do not begin until time T, as in (114), require that the system 
begin in i t s  0 state, this does not mean that the system has to stay there. 
consider an input x which begins at  time T but is such that later,  a t  time T > T, it 
has caused an  output 

Fo r  example, 

C S 

such that 

and 

= 0. (122)  

t = Ts 

For  input x 
the system could then stay in i t s  -1 state forevermore,  or, at  some la ter  time, it could 

the system could switch s ta tes  at t ime t = T 
C' S' 

Having switched states,  
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decide to switch back to i t s  0 state - all without violating its characterist ic equations 
(Eqs. 100 - 101). For inputs like x 
will. 
not analytic. 

the system has  the opportunity to  exercise free 
C' 

Therefore, for  this c lass  of input signals, the system is nondeterministic and 

Having raised the question of analyticity again, let u s  now answer it. 

3.1 EQUATIONS THAT CHARACTERIZE ANALYTIC SYSTEMS 

In the three examples considered, we stated that the equations considered charac- 
terized analytic systems. 
integro-differential equation) that characterizes an analytic system has a Volterra 
s e r i e s  solution. 
For example, the differential equation 

Any differential equation (or for  that matter, any integral or 

But not every differential equation characterizes an analytic system. 

2 (+F)2 = x  (123)  

characterizes a nondeterministic system (at any instant of time t, the system may 

choose either(dy/dt)= x or(dy/dt)= -x) and, therefore, it characterizes a system that 
is not analytic. 

On the other hand, the differential equation 

x y + + F +  1 = 0 (124) 

can, with an appropriate boundary condition, characterize a deterministic system, but 
not one that is also time-invariant (consider x(t) = u - ~  (t  - T) for various T) and, there- 
fore,  it  characterizes a system that is not analytic. 

Otherwise, the differential equation 

(125)  

can, with an appropriate boundary condition, characterize a time-invariant determin- 
ist ic system, but not one that is analytic. (It can be shown that if the input to an 

analytic system is infinitely differentiable, then that system's output must a lso be in- 
finitely differentiable. The input x(t) = cos ( t )  is infinitely differentiable but the third 
derivative of i t s  corresponding output does not exist. ) 

In Section 11, an analytic system was defined to be a time-invariant deterministic 

system whose functional was analytic about zero input at some time. Therefore, an 
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equation characterizes an analytic system if and only if  (i) solution pairs  to  the equation 

exist ( s o  that the equation characterizes a system), (ii) for a given input signal the 
equation's output solutions a r e  unique ( s o  that the equation characterizes a deterministic 

system), (iii) the equation's input-output solution pairs  must co-translate in  t ime ( s o  
that the equation characterizes a time-invariant system), and (iv) certain l imits  of the 
equation's output solutions for  small  perturbations of the input signal about zero a r e  

well behaved (all the t e r m s  in  Eq. 41 must exist and the s e r i e s  must converge abso- 
lutely in order for that functional to be analytic). 

Given an equation, there is an assortment of ways in which to  show that it has 
properties (i) - (iv), i f  i t  does, and thereby prove that it characterizes an analytic sys- 
tem. 

8 general t es t s  for  uniqueness (property ii). 
ak 

constructed f o r  each given equation. 
of time-invariance is usually tr ivial  (property iii). 
lytic about zero at some time (property iv) by a "brute-force" application of Volterra 's  
definition is tedious and unnecessary. Instead, once existence, uniqueness, and t ime- 
invariance have been shown, then it is far eas i e r  to  use our inspection technique to  
find a Volterra s e r i e s  solution to  the equation (if  there is one) and prove that it con- 
verges absolutely (perhaps for a certain c lass  of inputs). 
account of uniqueness, this is sufficient to prove analyticity. 

There a r e  several  general tes ts  for  existence (property i) but there a r e  no 

In general, a uniqueness proof must be 
Once uniqueness has been shown, then the proof 

Showing that the functional is ana- 

If this can be done, then, on 

3 . 2  MULTI-INPUT SYSTEMS 

The extension of our inspection technique to  multi-input systems is straightfor- 
ward. 

Eq. 62), then the symmetrization in par ts  of their  like o rde r  t e r m s  a r e  equal. 
is, if  

The only significant change is that when two Volterra s e r i e s  a r e  equal (see 
That 

F [u, v, w, . . . ] = G [u, r, w, . . . 1; al l  u, v, w, . . . , (126) 

then 

F . . . . (sl, s2,. . .)  
i, 1, k' 

SYm 
(SI, ..., Si) (si+l'. .., si+j) (si+j+l'. . ., Si+j+k) (. * .  

0.  (127) 

:kThe authorls experience has been that if our inspection technique is used, on a t r ia l  
basis, to get a Volterra s e r i e s  solution to the equation and if  that solution implies a 
feedback synthesis f o r  the system, then that feedback synthesis often suggests an ap- 
proach to a uniqueness proof. 
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IV. THE SIMPLE PENDULUM 

"Molecules, pendulums, violin strings, s t ruc  - 
tures,  etc. ,  all have oscillatory motion s imilar  
to that of a m a s s  attached to a s p r i n g . .  . . The 
spring-type force, F = -Kx, . . . increases  linearly 
with x, the displacement from equilibrium position. 
An oscillator with a force of this type is called a 
l inear or  a harmonic oscillator, and the c o r r e s -  
ponding oscillation is called harmonic motion. If 
the force depends on x in  any other way, the oscil- 
lator is called nonlinear. We find that although 
many oscil lators a r e  nonlinear, most a r e  l inear o r  
approximately so at sufficiently small  amplitudes 
of oscillations. ''22 

We shal l  now present an application of the inspection technique developed in 

Section 111. 
lum. 
with a pendulum's physical behavior, (ii) the reader  is familiar with the standard ma-  
thematical solution of a pendulum's behavior for "small amplitudes of oscillations", 
(iii) the Volterra series solution of a pendulum's behavior is easily obtained by our 
inspection technique, and (iv) the Volterra s e r i e s  solution shows a new aspect of a 
pendulum's behavior - nonlinear resonance. 

phenomenon cannot be explained by the standard "small amplitudes" solution but that it 
is nontheless clearly part  of a pendulum's physical behavior. 

We shall consider an actual nonlinear physical system - a simple pendu- 
W e  choose this as our f i r s t  example because (i) the reader  is intuitively familiar 

W e  shall see that this nonlinear resonance 

Consider the damped simple pendulum, oscillating in a plane, which is shown in 
Fig. 18. It is characterized by the well-known differential equation 

and the boundary condition of initial r e s t  

* 
where T is the input torque to the pendulum, and 8 is i t s  output angle. 

For a certain c l a s s  of input torques, this pendulum is an analytic system. Thus 

there  exis ts  some functional H such that 

*A pendulum problem is not out of place in an electrical  engineering report. Minorsky 
shows that, with appropriate identification of variables, Eq. 128 also describes the 
motion of a synchronous machine. 25 
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m=O 

Observe that i f  the input r produces the output 8, then Eq. 128 shows that the input -7 

produces the output -8. The pendulum's output angle 8 is thus an odd functional of i ts  
input torque r .  That is, 

m=O 

in which we have used the resul t  given by Eq. 64.  

8 

Fig. 18. Damped simple pendulum. 
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Equations 130 and 131 are simultaneously true.  Therefore all the even-order 
t e r m s  must vanish. That is, 

0 = H 0 2  = H [ T I  = . . .  = H2k[7] = . . .  . (132) 

In order  to find the odd-order kernels by our inspection technique, we shall substitute 
a Taylor s e r i e s  for sin 8 in (128). The result is 

2 d28 t a - de t mgL 
dt 7 = m L  - 

dt2 

By inspection, the f i r s t a - d e r  t e r m s  in 

2 2  1 = m L  s1 H1(sl)  + as lH1(s l )  

09 e2k+l 
( - )  (2k + l ) ! '  

k= 0 

(133) give us 

(133) 

(134) 

In o rde r  to write our solutions in compact form, we shall  define a dimensionless 
l inear f i l ter  whose system function is G. G(s )  is 

mgL G ( s )  = 
mL2s2 + as + mgL 

Here, we  have used the standard notation for the f i l ter ' s  natural frequencies 

s O = - a + j u D  (136) 

a 
2mL 2 a =  

w = Jw: - a  2 
D 

w 0 = J e  

(137) 

The s-plane plot of G is shown in Fig. 1 9 .  
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Fig. 19. s-plane plot of G ( s ) .  

The solution to Eq. 134 can now be written 

By inspection, the third-order t e r m s  in (133) give us  

* 
The symmetrical  solution to  (141)  is 

*We could have chosen any kernel that satisfied Eq. 141. It makes no difference in 
the final answer for 0.40 Throughout, however, we shal l  always choose a symmetr ical  
kernel because it w i l l  make some of our l a t e r  frequency domain arguments easier to 
write. (See footnote, page 42.) 
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By inspection, the fifth-order t e r m s  in Eq. 133 give us 

The symmetrical  solution to Eq. 143 is 

G(sl)  . . . G(s5)  G(sl + . . . + s5) 1 
5 !  (mgL) 

H5(s1, . . . , s ) = 5 

The higher o rde r  odd kernel’s transforms can be found similarly. The key to writing 
the (2k+l)-order t e r m s  is in finding all of the possible combinations of an odd number 
of positive odd integers that add to 2k + 1 (Zames’ t r e e s  can aid us  here 44 

). 
A parallel  synthesis of our pendulum system (from (132), (140), (142),  and (144) is 

shown in Fig. 20. 
is the resul t  of both a prefiltering and a postfiltering by G. 
back synthesis of the system which is shown in Fig. 21. 

be verified by f i r s t  rewriting Eq. 128 as 

Note that every t e r m  in the sys t em’s  functional (except for  the f i rs t )  
This suggests the feed- 

This feedback synthesis can 

_ .  L - d20 + - .  a - d 0 . e  = 7 + 0 - s i n e ,  
dt2 mgL dt mgL (145) 

and then taking into account the boundary condition (129), inverting (135) to get g, and 
convolving g(t) with (145). The final result is 
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Fig. 20. Parallel synthesis of H. 

- 
= f ( e )  = 8 -sin ( 8 )  

Fig. 21. Feedback synthesis of H. 

Equation 146 verifies the feedback synthesis in Fig. 21 and, therefore, indirectly ver i -  
fies the synthesis in Fig. 20 and our solutions for the kernels which led to it. 

memory system, and one nonlinear no-memory system f f o r  feedback. 
curve, over the interval ( - T , T ) ,  of f is graphed in Fig. 22 .  
nonlinear system has a "dead band" for  small  6 .  
I z I < 0. 08. ) 

The feedback synthesis, Fig. 21, uses one l inear memoried system, one l inear no- 
The transfer 

This graph shows that the 
(For  example, if  161 < 45",  then 

Thus we have arrived (albeit roundaboutly) at the standard mathematical 
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n - 2  n . - -  - 
2 2  

. -n 

Fig. 22. Transfer curve of f .  

solution to a pendulum's ' 'small amplitudes of oscillations" behavior: If the pendulum's 
output angle 8 is such that we can neglect 8 - sin 8 with respect to T/mgL a s  the input 
to f i l ter  g, then 8 is approximately equal to the convolution of the impulse response of 
g with T/mgL, and the pendulum is therefore a "linear" or a ''harmonic'' oscillator. 
That is, 

0 

It is not true, however, that Eq. 147 follows i f  "8 is small  enough'' o r  if "8 is small  
compared with .r/mgL". 

small  as we might wish and yet it is still not valid to neglect 8 - sin 8 with respect to 
T/mgL. This we shall see,  is because when filter g is highly resonant, then the cri t ical  
consideration wi l l  not be "what a r e  the relative magnitudes of 8 and T" but rather "what 
are the frequency components of 8 and 7". 

Indeed, we shall show that there  a r e  cases  in which 8 can be as 

A s  an illustration of the cri t ical  dependence of a pendulum's behavior upon fre- 
quency, consider the single -frequency input torque signal 

T(t) = To exp (st). (148) 
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Equations 47, 130, 132, 140, 142, and 144 then give us  

e(t) = H [ T~ exp ( s t ) ]  

) H2k+l (s, . . . , s) exp ([2k + 11 s t  
= c T:k+l 

k=  0 

3 L o  G (s) G(3s) exp (3st) = -  lo ~ ( s )  exp (s t )  + 
mgL 3 ! (mgL) 

l o  

5 ! (mgL) 
G5(s) G(5s) [ lOG(3s) - 13 exp ( 5 s t )  5 + 

+ . . .  . (149) 

Note that the (2k+l)-order t e r m  in Eq. 149 is multiplied by G([2k+l]s). (It comes 
from the postfiltering by g. ) Since the frequencies so and so a r e  the natural frequencies 
(poles) of G(s) (see Eq. 135), then Eq. 149 shows that 0 fails to exist at the frequencies 
s0/2k+l and s0/2k+l (k = 0, 1, 2, . . . ). 

They a r e  shown in Fig. 23. 

4 . 1  NONLINEAR RESONANCES OF A PENDULUM 

* 

* 
We shall call  these frequencies the nonlinear natural frequencies of the pendulum. 

To illustrate the nonlinear resonances of a pendulum, in the vicinity of i ts  non- 
linear natural frequencies, consider the sinusoidal input torque signal 

I- -l 

T(t) = R e  1 To exp ( j u t ) ]  . 

* 
Equations 47, 130, 132, 140, 142, and 144 then give u s  

"Cf. Eq. 149. Equation 151 came out in this simple f o r m  because we made the 
kernels symmetric. (See footnote, page 38.) 
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e(t) = H Re To exp ( j  u t ) ]  [ 

m=O k=m 

3 * 2  

1 9 2  (mgL) 

To (To) 
5 

+ G3 ( jo)  G2( - jo )  [ G(3jo) + 6G(jo) 

+ 3G(-jw) - 11 + . . . )  exp (jot) 

, T3 

m4 m* 

+ l o  G4 ( j a )  G(-jw) G(3jo) [ GG(jw) + 4G(3jo) - 11 
3 84(mgL) 

1 T i  5 G5(jw)G(5ju) [ lOG(3jw) - 1 
192 O (  mgL) 

+ . . . ) exp (3jot)  + 

+ . . .) exp (5jo) +. . . . 1 
Note the presence of t e r m s  like G ([2k+l] ja)  in Eq. 151. Since f i l ter  g is resonant, 
fo r  sinusoidal frequencies in the vicinity of aD (see Fig. 19),  then Eq. 151 shows that 
the pendulum is resonant for sinusoidal frequencies in the vicinity of uD/2k+l (k = 0, 1, 

2, . . . ). To be specific, let  us  consider sinusoidal inputs at the f i r s t  odd subharmonic 
of oD (k = 1). That is, 
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I - -  3 1  
/ I 3  

Fig. 23. s-plane plot of a pendulum's natural  frequencies. 

Let us  assume that the pendulum is very lightly damped, that is, 

0' 
a << w 

Then Eq. 138 gives us 

W D  W 0 '  

and Eq. 135 gives us  

G ( % ) z  9 

(153) 

(154) 
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. 

If we define two r e a l  constants, A and B and a phase angle $ such that 

0 
w 
- -  
48a - B' 

then (151) - (159) gives us 

8 ( t ) = R e  [(,+&A3 - + A 5 B + . . . )  e x p ( j  [ +I$]) 
+ (-jA3B - 6A 5 2  B + .  . . )  exp (j[wot + 301) 

5 w  0t +(A 128 A 5 B +  . . . )  e x p ( j  [T +5$])  

Equation 160 shows us that i f  we choose B large enough (make the damping a small  
enough compared with (do), then the major component of the output wil l  not be at the 
same frequency as the input. An examination of (147) shows that this aspect of a pen- 
dulum's behavior cannot be predicted o r  explained on the basis of the standard "small 
amplitudes of oscillations'' solution for a pendulum. Yet it is not true that this pheno- 
menon does not take place at "small amplitudes of oscillations". 
shows that if we choose A small  enough (make To small  enough compared with mgL), 
then this phenomenon can take place at arbitrari ly small  amplitudes of oscillation. 

4 . 2  PHYSICAL EXPLANATION O F  A PENDULUM'S NONLINEAR RESONANCES 

Equation 160 also 

The pendulum's nonlinear resonance phenomena, while unexplainable by the stand- 
ard mathematical solution of its behavior for l tsmall  amplitudes of oscillations", is 
nonetheless, easily explained physically. Consider Fig. 21. It shows that if  an odd 
subharmonic of G's  resonant frequency is present in T, then a component at that f re -  
quency must also be present in 6 .  
Fig. 2 2 )  is an odd function of 8, then the fed-back signal z must contain a component at  
the filter's resonant frequency. If filter G is resonant enough, then this component can 
easily induce a significant sinusoidal component in 8 at GIs  resonant frequency - even 
i f  the input T contains no component at  that frequency. 

Since the feedback network's transfer curve (see 
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V. COMMUTATOR MACHINES 

We shall now present another application to an actual nonlinear physical system of 
We shall investigate one of the oldest the inspection technique developed in Section 111. 

devices known to electrical  engineering, the commutator machine. 
Figure 24 is a schematic diagram of a single-axis commutator machine driving a 

load that is both inertial and frictional. The parameters37 of this system a r e  

field voltage 

armature voltage 

f ie ld  current 

armature current 

rotation speed of the machine 

field resistance 

se r i e s  resistance of the armature and the brushes 

f i e l d ' s  self -inductance 

a rma tu re ' s  self -inductance 

machine's speed coefficient 

load's coefficient of torque drag per  rotation speed 

load's moment of inertia. 

We shall assume that Rf' Ra, Lf' La, G, A, and J a r e  constants (that is ,  coil saturation 
and variable loading wil l  not be considered). With this restriction, the sys t em ' s  equa- 
tions of motion38 a r e  

d 
(Rf + Lf z )  if = Vf 

G W i f  + ( Ra + La x) d ia = va 

( A + J  $ ) W = G i  a if 

with the boundary condition of initial r e s t  

if( t) ,  i ( t) ,  and u( t )  = 0 until vf(t), va(t) # 0. (164) a 

When excited by a single source, the two configurations of the device a r e  a s  a 

shunt-wound motor (Fig. 2 5 )  and as a series-wound motor (Fig. 26) .  
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Fig. 24. Schematic diagram of a single axis commutator 
machine driving a load. 

Fig. 25. Diagram of a shunt-wound motor. 
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Fig. 26. Diagram of a series-wound motor. 

5 . 1  SHUNT-WOUND 

When wired as a shunt-wound commutator machine, the system has two addi- 
tional constraints. They are 

The author has shown elsewhere that Eqs.  161 - 166 characterize an analytic s y s -  
tem for a certain class of inputs. 2 6 J 2 8  Therefore, there  are three functionals, F, I, and 
W, such that 

if(t) = F[v] 

ia(t) = I[v] (168) 

a ( t )  = W[v]. (169) 

Observe from the characterizing equations (Eqs. 161 - 166) that if  input v yields 
outputs if' i and a, then input -v yields outputs -if' -i a' a' 
functionals, and W is an even functional. 

then input h v  yields output hif' where A is any constant. 
of v. 
know that Fo and Io were zero  because F and I are odd). 
to rewrite (167) - (169) as 

and fa. Thus F and I are odd 

Observe also that i f  input v yields output if, 
Thus F is a l inear  functional 

Also,  observe that the boundary condition (164) gives that Wo is z e r o  (we already 
These observations allow u s  
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m=O 

m =  1 

By inspection of Eqs. 1 6 1  and 165, we get 

By inspection of Eqs. 1 6 2  and 165 for f i rs t -order  t e rms ,  we get 

0 + (Ra + slLa)  I1(sl) = 1. 

F o r  (2k+l)-order t e rms  (k = 1, 2, 3, . . ., ), we get 

By inspection for (2k)-order t e rms  (k = 1, 2, 3, . . . ,), Eqs. 163 and 165 give US 

F o r  solutions to Eqs. 173 - 176 we s h a l l  choose 
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k =  1, 2, 3, . . .  (179) 

k = 1, 2, 3, . . .  (180) 

Syntheses of these solutions a r e  shown in Figs. 27,  28, and 29. 
syntheses imply the feedback synthesis shown in Fig. 30. 

directly verified by Eqs. 161 - 163, and 165. 

Taken together, these 
This feedback synthesis is 

Thus Eqs. 177 - 180 are also verified. 

I I I 
l o  lo  

Fig. 27. Synthesis of if. Fig. 28. Synthesis of ia, 

"C-~p-' R f  + sLf 

lo  

Fig. 29. Synthesis of w~~ and ia, 2k+l. 
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n 

G 
A +  SJ 

1 

Ra + sLc, 

l o  10 

10 

Fig. 30. Feedback synthesis if' ia, and 0. 

Zk+l and W2k Equations 179 and 180 make up a two-step recursive formula for I 
(cf. Eq. 108). They result in  the following closed forms: 

k = 1, 2 ,  3 ,  ... (181) 

1 k- 1 

n= 1 

k = 2 ,  3 ,  4, ... . 
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5 .2  TWO CASES OF INPUTS 

For a quick check on our  resul ts ,  let  us  consider the t r ivial  case for which v(t)  = Vo, 

a constant. Equations 170 - 1 7 2  then give us  

if(t) = FIVO] = VOF1(0) (184) 

n=  0 

00 

w(t) = W[V0] = c V2m 0 W2m ( 0 ,  . . . 9 0 ) .  

m= 1 

Equations 177, 178, and 181 - 183 give u s  

1 F (0)  = - 
1 Rf 

If I VoI < 
gives 

(Rf /G)  d y ,  then the substitution of Eqs. 187 - 189 in Eqs. 184 - 186 

vo 
Rf 

if( t)  = - 

i ( t )  = a 
(191) 
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A RaRf o ( t )  = 
G2 Vi 

1 +  a 

A R,R; 

The substitution of Eqs. 190 - 192 in Eqs. 161 - 163 will show that they are indeed 

Let u s  next consider the nontrivial case  in which v is g, stationary white Gaussian 

the cor rec t  DC solutions for  the shunt-wound motor. 

noise of power density P. 

duct of an odd number of g ' s  is zero.  
The statist ical  expectation (ensemble average) of the pro- 

20,30 

2n+l 

k =  1 

The statist ical  expectation of an even number of g ' s  is the sum of the products of 
20,30 their expectations taken in pairs .  

2m 

k= 1 pa i rs  i , j ,  

20 For example, 

Since F and I a r e  odd, then the substitution of Eq. 193 in the expectations of the 
expressions given by Eqs. 170 - 1 7 1  shows that when v = g the statist ical  expectations 
of if and i a r e  zero.  That is, a 

= o  (197) 
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n= 0 

= 0. (198) 

But W is an even functional of v, hence i ts  statist ical  expectation need not vanish. 

is 

It 

m= 1 

For example, the f i r s t  two t e r m s  in (199) are 
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-00 

(201 Cont.)  

These t e r m s  can be evaluated, in a few steps, with the aid of George’s association 
theorem. 19’20 Consider the particular input ? 

- 
which yields the particular uutput W .  T h e n  

-00 

= P w 2  (t, t).  (203) 

Equations 200 and 203 show that the expectation of w 2  is equal to the bilateral Laplace 
transform of w 2  at s = 0. 

w 

That is, 

w2(t) exp ( - s t )  dt] 
s= 0 

i5 2(o) = 

-00 

- 
The value of Q2(s) is easily found by considering the multilinear correspondent 

18 - 
of o2 (Eq. 5 6 ) .  It is 
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-00 

whose bilateral Laplace transform, by Eq. 182, is 

The application of George's association theorem to (206) shows19 by inspection that 

When (207) is evaluated at  s = 0 and that value is substituted in (204) ,  then the resul t  is 

PG 
E [ w 2 ( t ) ]  = A(LfRa + L,Rf) '  

The higher order t e r m s  in  (199)  are found similarly. Thus we can find the average 
tation speed of a shunt-wound motor when it is excited by stationary white Gaussian 
noise. 

The two cases of input signals just considered se rve  to  illustrate some of the 
a r e a s  of usefulness for the Volterra series characterization of nonlinear systems. 

ro- 

Namely, in addition to  the straightforwardness of the computation of the output of an 
analytic system for  a constant-input signal or a sinusoidal-input signal (e. g . ,  the pen- 
dulum output, Section IV) ,  the statist ical  moments of the system's  output for  stochastic 
inputs can also be calculated - even in those cases  in which there are no known methods 
fo r  executing such computations from the sys t em ' s  characterizing differential equation. 

One of i t s  This is not to say that the Volterra series does not have disadvantages. 
most se r ious  disadvantages is that in being an infinite series, we have to decide how 
many t e r m s  we must compute in  order  to get an adequate approximation for  i t s  Value. 
This question need not be without answer.  
motor,  the author has shown e1sewhe1-e~~  that if the input voltage i s  everywhere bounded, 
then the truncation e r r o r  introduced by approximating w by i t s  f i r s t  N nonzero t e r m s  is 
a l so  everywhere bounded. That is, if 

F o r  example, in  the case of the shunt-wound 
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I 

then 

; for  all t, 
Rf  d * R a  I v(t) I 5 v < VB = G 

N I 

m =  1 I I 

5 . 3  SERIES MOTOR 

When wired as  a series-wound commutator machine (see Fig. 26 and Eqs. 1 6 1  - 
163), then the single -axis commutator machine's characterist ic differential equations 
a r e  

where 

( A + J - & - ) w = G i ,  2 

v = Vf + va 

i = if + ia 

R = Rf + R a  

L = Lf + La. 

Equations 2 11 and 2 1 2  show that i is an odd functional and 0 is an even functional of v. 
The boundary condition (164) shows that the zero-order  t e rm of w is zero. Thus 

n= 0 

00 

m= 1 
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The f i rs t -order  t e r m s  of (211)  a r e  

(R + slL)H1(sl)  + 0 = 1. 

The (2k)-order t e r m s  of ( 2 1 2 )  a r e  

k =  1, 2, 3, . . .  . (220) 

The (2k+l)-order t e rms  of (211) a r e  

m= 1 1 
k =  1, 2,  3, . . .  . ( 2 2 1 )  

Equation 219 gives u s  

Equations 2 2 0  and 221 give us  two-step recursive formulas for all of the Q's and all of 
the remaining H ' s .  W e  shall choose the solutions 
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and 

k 

- m= 1 
R + Is, + . . . + s ~ ~ + ~ ] L  , 

k =  1, 2 , 3 ,  . . .  . (224) 
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VI. THE VARACTOR 

When a semiconductor diode is operated backbiased, then it behaves like a nonlinear 
We shall present capacitor and displays variable reactance - hence the name varactor.  

an application of the inspection technique, developed in Section 111, to a varactor circuit. 

6 . 1  MODEL OF A VARACTOR 

The abrupt junction semiconductor diode, shown in Fig. 31, s to re s  a charge +q in 
the N-type region of i ts  depletion layer, and a charge -q in the P-type region of i ts  

2 depletion layer. The voltage ac ross  the depletion layer is kq , where k is a positive 
constant?' The diode has a bulk resistance R,  and a F e r m i  contact potential $ (because 
of the two leads attached to it). 
stants. 
junction varactor. 

W e  shall assume that both R and $ a r e  positive con- 
The diode's voltage vD can then be modeled by the usual equation for an abrupt 

p 1 CHARGE DENSITY 

(225) 

Fig. 31. Abrupt-junction semiconductor diode. 
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Equation 225 is a model, rather than a characterization, because it fails to match all 
of the varactor 's  nuances. 
cally unobtainable; (ii) when v,, is a positive constant, then Eq. 225 predicts that 

i =(dq/dt)= 0. (In reality, there is a small, but nonzero, leakage current. ) (iii) In an  
actual diode, the bulk resistance R changes slightly with the width of the depletion 

layer (which depends upon 9). 

differential equation for an abrupt junction varactor but we must bear  in mind that our 

analysis wil l  be subject to i ts  defects. 

6 . 2  ONE VARACTOR IMBEDDED IN A LINEAR NETWORK 

Some of i ts  defects are:  (i) negative values of q a r e  physi- 

Nonetheless, we shall use (225) as our characterist ic 

Consider a system composed of one abrupt-junction varactor imbedded in a l inear 
network. 

a circuit model for that system. 
of the l inear network, as seen by the varactor. 
lent open-circuit voltage into two parts: E the varactor 's  bias voltage (a constant), 

0' 
and e, a variable. By inspection of Fig. 32 and Eq. 225, the circuits characterist ic 
equations a r e  

If we form the Thgvenin equivalent of the l inear network, then Fig. 32 shows 
Here Z is the Thgvenin equivalent output impedance 

We have divided the ThLvenin equiva- 

and 

LINEAR NETWORK 
(EXCEPT FOR O N E  

VARACTOR ) 

Fig. 32. Thkvenin 

+ " -  D 

EO u2 
equivalent of one varactor imbedded 

EO u2 
equivalent of one varactor imbedded in a linear network. 
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:r 
We shall assume that Z has  no series capacitor. That is, 

E o  [sZ(s)] = 0. 

Then there are two DC solutions to  (226). They are 

(228) 

k *  (229) 

Depending on which of these two values w e  choose as  the zero-order t e r m  of a 

functional solution fo r  q, w e  get two different functional power series (cf. Eq. 106). We 
might eliminate the negative value on physical grounds (the charge stored in the N-type 
region of the depletion layer must be positive), but there is a more interesting reason 
fo r  not choosing the negative value - it  is unstable. 
when both e and v a r e  zero. 

To show this, consider Eq. 226 
We may then rewrite it 

k 2  R (4, - 

The phase-plane 
solution is stable but 

2 
1. 

graph of (230) is 
that the negative 

(230) 

shown in Fig. 33. It shows that the positive DC 

DC solution is not. The significant fact is that 
had we chosen the negative value a s  the zero-order  t e r m  of a functional for  q, then the 
Volterra se r ies  that w e  get by our inspection technique has  natural frequencies in the 
right half-plane. 
w e  cannot rashly assume that it characterizes an  analytic system. 

This example serves  to  remind u s  that, given a differential equation, 

Having extablished which DC solution is tenable, w e  see that the boundary condition 
of initial r e s t  for  this varactor system is 

v(t) = 0, q(t)  = J 'o  - + @ until e( t )  # 0.  k (231) 

< 
' In  a practical circuit ,  this is true. If there  were a series capacitor, then it would keep 
the bias E o  from the varactor. 
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Fig. 33. Phase-plane graph of Eq. 230. 

It can be shown that, for a c lass  of inputs about zero, Eqs. 226 ,  227 ,  and 231 charac- 
ter ize  an analytic system. Hence 

q(t) = G[el 

v(t) = H[e]. 

From the boundary condition, (231) ,  the zero-order t e r m s  of G and H a r e  

k 

H = 0. 0 

The f i rs t -order  t e r m s  of (226)  a r e  

1 - s lRG1(s l )  - 2k Go G1(sl)  - H1(sl)  = 0.  
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The n-order terms of (226)  are 

n 
r 1 

m= 0 

- Hn(sl,.  . ., sn) = 0;  n = 2, 3, 4 , .  . . . 1 (237)  

The m-order t e r m s  of (227)  are 

I Sym { H ( S  l,...,~m) m (sl,. . . , sm) 

m =  1 , 2 , 3  ,... . (238)  

For solution to Eq. 238 w e  shall choose 

(239)  +'m s = sl+ ". 

When (239)  is evaluated for m = 1 and the resultant value for H1(sl)  is substituted in 
Eq. 236,  then the resul t  is 

1 G1(sl) = 
2 kGo + s1 [R + Z (s l ) ]  
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When the value for Hm given by (239) is substituted in (237) and the highest order  t e r m  
of G is isolated, then it is seen that we may choose the solution 

n- 1 - 
- k >, G m ( s l , .  . . , s ) G n - m ( ~ m + l ' .  . . sn) m 

m= 1 G n ( s l , .  . . , s ) = n 2 k G 0 + ~ [ R t Z ( s ) ] ]  a 

+'n s = s  +... 1 

n =  2 , 3 , 4  ,... . (241) 

Paral le l  syntheses of G and H are shown in Figs. 34 and 35. 

feedback synthesis of both G and H shown in Fig. 36. 
by Eqs. 226, 227, and 231 which therefore verifies Eqs. 234, 235, and 239 - 241. 

Together they iiiiply the 

Figure 36 can be directly verified 

Fig. 34. Parallel  synthesis of G. 

6 . 3  TRANSIENT RESPONSE OF A VARACTOR FREQUENCY DOUBLER 

A s  an example of the application of our solution, we shall compute a frequency 
doubler circuit 's  transient response. F o r  simplicity, we shall let  Z be an inductor, 
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- 
e- rZGl 

Fig. 35. Parallel  synthesis of H. 

"1 - -+ 

w = f ( q ) = - k q 2 +  2 k G o q +  kGo 2 

- 
10 

"2 
c -k rZGl - - GI 

l o  Z0 lo 

Fig. 36 .  Feedback synthesis of G and H. 

that is, 

Z ( s )  = SL, 

>$ 

and we shall restrict  our attention to the second-order t e r m  in the output voltage. 

multilinear correspondent to  the second-order terrn18 is 

The 

(242) 

;$There is no zero-order t e r m  (see Eq. 235) .  There is no doubler effect from the f i r s t -  
order t e r m  (cf Eq. 147).  
our frequencies judiciously, then the doubler effect  f r o m  t e r m s  higher than the second- 
order t e r m  can be made small  as compared with it. 

If we consider small-amplitude input signals and choose 
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Its multivariate bilateral Laplace transform is 

(243) 

The value of H is found from Eqs. 234 and 239 - 242.  They give u s  2 

2 
-(sl t S 2 )  kL 

([sl + S ~ ] ~ L + [ S ~  +sZ]R+ZkGo) (s;L+sl RtEkGo) (s;Lts2R+2kGo ) 

( s 1 -s 0 1 (s 1 -.E) ( s 2 -s 0 1 ( s  2 -s ;) 

where 

and ( c f .  Eqs. 136 - 139) 

D .  s = - a + j w  0 

(245 1 
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R 
a 2L 

0 -  D - JW 

(248) 

(249 

1 

(250) 

In preparation for  application of George's association technique, we shall rewrite 
(245) in  a partial fraction form. That is, 

(251) 

where 

We shall let the input-voltage signal e be a step of sinusoid. That is ,  

e( t )  Re [ Ei exp (sit) ] u-,(t) .  

The bilateral  Laplace transform of e is therefore 

::< 
B B E(s) =- + - s - s .  >t ' 

i 1 s - s  

where 
1 
2 i' B = - E  
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When Eqs. 251 and 254 a r e  substituted in  Eq. 244, we find that the transform of 
the multilinear correspondent to v2 is 

where 

and 

::: 

>' ] [s2AE + A 

0 s 2 - s  0 

[ s 2 c s  + C:# :; + 
0 0 s 2 - s  

1 0  

-+ s1 B - si B :::I 
s1 - si 

.Ir 

B B 'I. -+ 
s2 - s i s2 - si 

::: ] D +  D::< 

i '1 - 'i s1 - s 

D D -+ s2 - s i s2 - s. 
1 

By using George's frequency association technique, the transform of v2 is found 
f rom Eq. 256 by inspectionlg to be 

(C")2 + D2 + (D't)2.,, + 2CC" 
:r s - 2 s  -P :r 

i s - 2 s i  s - s o - s o  
V2(s)  = F(s) [ c2 + 

s - 2 s o  s - 2 s o  

.e. 

2CD" 
.-. + 2C:rD:t .I, ,~ :r + :t 

2CD + + 2DD.'. 

s - s  - s  - '0 - si s - s  - s  s - s  O i  - s  O i  i i  

.c ,P 

s - 2C:rD so - si 1 + 
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Before evaluating v2(t)  from (259), let us take a moment out to study v2 in the 
vicinity o f t  = 0. Observe from (246)  that 

(260) 
k 

2 -  lim [F(s)] = - 
s + w  

Therefore, from (259) we find 

That is, v2(t) has no singularities at t 0. We also find that 

V2(0+)  = S+OO lim [SV2(S)] 

(261)  

* *  - [ C2 t (C”)‘t D2 t (D*)’ t 2CC* t ZDD“ t 2CD t ZC D t ZCD* t ZC*‘D] 
L2 

2 =-d C + C” + D + D’’)2 = - % (Re[C + D])  . 

From (257) and (258) w e  find 

AB AB AB’‘ A*B 
so - si s .  - so so - s .  s .  - s 

C + D  =-+-+-+- 
1 1 1 0  

= 2j Im-  - ] 
Therefore 

Re[C + D ]  = 0 

and by Eq. 262 w e  have 

(262)  

(263) 

(264) 

+ 
V 2 ( O  ) = 0. 
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That is, V2(t) is continuous at  t = 0. 

v at  t = 0 is zero. 
steady state. 

Similarly, it  can be shown that the derivative of 
Thus we see  that the transient response is a smooth build-up to the 2 

I 
The steady-state t e r m s  in Eq. 259 a r e  due to  the poles at s = 2 si and s = 2 si.  

This shows that the circuit does actually double input frequencies. 
at  s = 2 si, by Eq. 259, is 

The residue of V2 

[ ( s  - 2 Si) V2(S)] l im Res ( 2 s . )  = 
1 s + 2 s i  

2 
= F ( 2  si)D 

n n  2 

- - 4 k s i B '  
L2(2Si - s o )  ( 2 S i  - 0 

Here we have used Eqs. 246 and 258 to  evaluate F and D. 

Equations 266 show that if we wish to  maximize the arnplitude of the doubler's 
steady-state output, then w e  should choose si in  the vicinity of s 
what of a surprise.  
doubler's circuit is so. 

doubler's output would have been maximized when the input's frequency w a s  at  half the 
resonant frequency of the l inear incremental model. Our reasoning would be: "If si 
is near 1 / 2  so, then when si is doubled it resonates the incremental circuit and, there- 
fore,  gives the largest  possible output. " Equation 266 shows that such reasoning is 

false. The residue of the doubled t e r m  does have a relative maximum near  si= ( j w D / 2 )  

(when 2 si - s = a) but i t s  absolute maximum is near si = j uD. A posteriori, we can 0 
explain this result  physically: When the input frequency is near the l inear incremental 

c i rcui t ' s  resonant frequency, then the voltage source's  input current is maximized. 
When the maximum current is "doubled", it produces the maximum double-frequency 

output. Thus we choose 

This may be some- 

By "physical insight", we might have guessed a pr ior i  that the 

0' 
The natural frequency of the linear incremental model of the 

si = J W D .  

The distinct frequencies present in Eq. 259 are then'* 

* * 
Frequencies s and s came f rom F(s) in Eq. 259. Equation 259 looks as if there 
is also a frequency at s = s. t si = 0 but Eq. 246 shows that it has a residue of zero. 

0 9 3  0 9 3  * 
1 
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* 
i s = s o t s  

0 .1  

* 
s = s  t s  

0,2 0 0 

= - 2a 

s = so 
0 , 3  

= - a t jw, (and s * )  
0 9 3  

s = so + si 
0,  5 

,t 
(and s \ 0,  5 = - a + 2 jw, 

(271) 

(272) 

An s-plane plot of these frequencies is shown in Fig. 37. It shows that v,(t) 

consists of two dying exponentials, (so, 

at half the frequency of the steady state (s 0, 3 ), two exponentially damped sinusoids at 
the same frequency as the steady state (s 0, 4 and s 0, 5 ), and the steady state (so, 6). 

The value of v2(t) is found by rewriting (259)  as 

and s 0,  2 ), one exponentially damped sinusoid 
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'0,6 

Fig. 37 .  s-plane plot of the frequencies in v2. 

Then it is seen that 

6 

n= 3 1 

F o r  the sake of illustration, we shall compute the double frequency t e r m s  in (275)  

in the case of small damping. That is, 

a < < w  D' (276) 

SO that Eq. 249 shows that 

7 3  



Fig. 38. Envelope on the double frequency components in  v 2 .  

then 

k E?  

2 - 2 kEi  
Res  (so,  5 )  =: 2 

3 ( o  

k E ?  

When Eqs. 278 - 280 are substituted in Eq. 275 then the result  is that the doubled- 
frequency t e rms  are 

Re [ E; exp (2  j o 0 t) ] u-l(t). (281) 

Figure 38 is a graph of the envelope on the transient build-up t o  the steady state of 
the doubled-frequency t e r m s  that we have just computed. 
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VII. ANALYSIS OF A MAGNETIC SUSPENSION DEVICE 

The inertial guidance instruments of some of our nation's space vehicles a r e  
magnetically suspended by a device developed at the Instrumentation Laboratory, 
M. I. T. 
in Fig. 39. The device's principle of operation is as follows: If the suspended block 
is moved toward the right, then it detunes the circuit on the right but it tunes the cir- 

cuit on the left. This causes the current flow on the right to decrease and the current 
flow on the left to increase. This imbalance in currents produce a net magnetic force 
to the left which r e s to re s  the block to center. 

12' 21' 23 A single axis version of this magnetic suspension device is shown 

We shall now present an application of our  inspection technique, developed in 
Section 111, to this single-axis version of the magnetic suspension device. 
we shall use the functional characterization of this magnetic suspension device, obtained 
by o u r  inspection technique, in order  to (i) determine the device's static suspension 
stability, (ii) determine the device's dynamic suspension stability, and (iii) show that 

the suspension wi l l  have an  oscillatory instability whenever the device has insufficient 
mechanical damping. (The results of an experimental verification of these predicted 
oscillatory instabilities a r e  given in the appendix. ) 

Specifically, 

In order  to use our inspection technique t o  determine this magnetic suspension 
device's functional characterization, we shall f i r s t  derive this device's characterizing 
differential equations by the well-known state-function, state-variables, Hamilton's 
principle approach. 

7 . 1  DIFFERENTIAL EQUATIONS CHARACTERIZING THE DEVICE 

In a state-function, state-variables, Hamilton's principle derivation of the equa- 

tions that characterize the device shown in Fig. 39, we must f i rs t  extract the device's 
lossless  magnetic energy-storage structure, which is shown in Fig. 40. Figure 40 

shows that the differential increment dw, in the s t ructure 's  stored magnetic energy w, 
owing to differential increments in the variable pairs  at the s t ructure 's  one mechanical 
and four electrical  ports, is 

4 

d w =  - f d x +  ek ik dt r 
k= 1 

4 

= - f r d x + x  i dXk, 

k= 1 

75 



I 
Fig. 39. Single -axis magnetic suspension device. 

G A P  AREA A ,  

+ t i' 

Fig. 40. Suspension device's lossless  magnetic energy storage structure 

where f r  is the device's restoring force.  
that w is a state function of five state variables (the four flux linkages X k  and the block 
displacement x) and that their  port pairs  a r e  

The differential form of (282)  demonstrates 
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- f =a W(X1' h2'  h3, X4' x). 
ax 

Although the s t ructure 's  stored energy is a function of four flux linkages, if  we 
neglect leakage, then there  are only two independent flux linkages in the entire structure.  
We shall choose the s t ructure 's  mean flux linkage. 

hl + h 2  + h3 + A4 

4 A =  

and its mean-difference flux linkage 

- hl + h 2  - h 3  + X4 
4 6 =  

to be the two independent flux linkages. The s t ructure 's  other flux linkages are ,  then, 

h = ( - )  k 6 + A; k = 1, 2, 3, 4. (287) k 

If we neglect fringing in  the gaps, then the s t ructure 's  stored magnetic energy is 

2 g ( 2  + 62) - 4 x X 6  w =  
P A  N2 

When the expression for w, given by (288),  is substituted in Eq. 284, then the result  
is 

4 x 6  f =- 
I- P A N ~ '  

The par t ia ls  of Eq. 288 with respect  t o  X and 6, with the aid of Eqs. 283 and 284, yield 
two additional equations. They are 
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4 4 

k =  1 k= 1 

4 4 

. axk = k .  
( - )  lk. a 6  

k=  1 

A -  xx 
p A  N2 

4 g  

k= 1 

(290) 

(291) 

Figure 41 shows the connections external to  the lossless  magnetic energy- storage 
structure,  shown in Fig. 40, which completes the formation of the device shown in 
Fig. 39, except that the capacitors have been generalized to  any linear impedance z. 
These external connections impose seven independent constraints. They a r e  

i l  = i 3  

Fig. 41. 

LOSSLESS M A G N T I C  
ENERGY STORAGE 

STRUCTURE 

EXTERNAL ELECTRICAL 
CONSTRAINT 

- ",+ 

u - e l  P 
"B 

- - V 2 +  

i2 R 

k C  + 
e2 - " 

i3 R 
a " + 

'3 
A v 

i4 
R 

r =  + 
04 
e - 

Diagram for the suspension device. 



i2 = i 4 (295) 

2 f + f r  - K g =  M- d x  
dt2 ’ 

There a r e  seven external constraints (Eqs. 292 - 298), seven internal constraints 
(Eq. 287 four times, Eqs. 289 - 291), and four definitions (ek dt = dAk (Eq. 282))  for  a 
total of eighteen equations in twenty-one variables. When we eliminate the 15 internal 
variables ik‘ ek,  hk‘ vl, v2, and fr ,  then we a r e  left with three equations in the r e -  
maining 6 variables t, A, 6, v, x, and f. Together with the boundary condition of initial 
r e s t ,  these three equations characterize the device. They are 

2 2 d  PAN v = [z(t) + 2RuO(t)](*$g - x) (A + 6 ) ]  + 2pAN dt (A  + 6 )  (300) 

d d 4 h 6  
dt dt f = - ( M - + K ) x -  - 

pA N2 
(301) 

7.2 FUNCTIONAL SOLUTIONS OF THE SYSTEM’S CHARACTERISTIC EQUATIONS 

These three equations (Eqs. 299 - 301) in  six variables, t, A, 6, v, x, and f, 
together with the boundary condition of initial rest ,  characterize a system with two 
input signals (two functions of t = three variables) and three output signals. 
shown i n  Fig. 42, we shall choose v and x, rather than v and f, as the input signals to  
this multi-input system. 
then obtain for the system is simpler and is analytic for the stability demonstrations 
that we  wish to  show. 

A s  is 

We do so  because the functional characterization that we shall 

1 
If the signals v, x, A, and 6 a r e  solutions of Eqs. 299 and 300, then for  any con- 

stant c, the signals cv, x, ch, and c6, are  a lso solutions. Therefore X and 6 are 

‘!‘We have assumed the boundary condition of initial rest .  Namely f, A, and 6 a r e  zero 
until e i ther  v or x is not zero. 
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v e  D 

x- 

t o  

Fig. 42. System of five signals characterized by three equations. 

. c o x  
E q .  299 
E q .  300 - 6  
E q .  301 

-f 

linear functionals of v. 
then the signals v, -x, X, -6 ,  and -f a r e  a lso solutions. 
tional of x, 6 and f a r e  odd functionals of x. Thus, by Eq. 62, we may write 

If the signals v, x, A, 6 ,  and f a r e  solutions of Eqs. 299 -301, 
Therefore h is an even func- 

n=O 

m=O 

(302) 

(303) 

(304) 

p=o 

The (1, 0)-order t e r m s  of either Eq. 299 or  Eq. 300 a r e  

The (1, 2n)-order t e r m s  (n#O) of either Eq. 299  or  Eq. 300 a r e  (see Eq. 127) 
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O =  ) + 2Rg + 2pAN 2 (sl+. . . + s ~ ~ + ~ ) ]  

The (1, 2m+l)-order  t e r m s  of either Eq. 299 or Eq. 300 a r e  

Let us  define two dimensionless linear fi l ters,  G and H, whose system functions 
are 

(308) 
2R 

G(s) = Z(s) + 2R + SL 

Z ( s )  + 2R 
Z ( s )  + 2R + sL’ H(s) = 

where 

The syntheses of G and H are shown in Fig. 43. 
(305) as 

We can now write the solution to 

For solutions to  Eqs. 306 - 307 we shall choose 
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L 
0 0 
+ T t 

Fig. 43. Syntheses of two fi l ters.  

2n+l 

n 
k= 2 

L 
L1, 2 n ( ~ 1 , .  . . , s ~ ~ + ~ )  = G ( s l )  H(s l+ .  . .+sk); n 1, 2, 3 , .  . . 

4% 

2m+2 

m = 0 ,  1 , 2 , . . .  . (31 3 )  

The products in (312) and (313) imply the feedback synthesis of h and 6 which is 
shown in Fig. 44. It can be directly verified by Eqs. 299 - 300. 

u 
l o  

Fig. 44. Feedback synthesis of h and 6. 
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The kernels of the functional for f a r e  found from (301). Its (0 ,  1)-order t e rm is 

The (2, 2p+l)-order t e r m s  of Eq. 301 gives us 

SYm 
) 1 F2, 2p+l(‘l’ * . ”  ‘2p+3) = (sl, s 2 )  ( s 3 , .  . . , s ) 2pt3 

SYm 
2p+3 (SI> s2) (S3> . . . I s 

P 

k= 0 

p = o , 1 , 2  ,... . (315) 

We shall now use these solutions to  study the system’s stability. 

7.3 D-C STABILITY 

Let us f i rs t  consider DC block displacement signals (that is, x(t) = X a constant). 0’ 
For  this  case, (298) gives us 

f = F [v, Xo]  = -fr. (316) 

That is, in order  to hold the block displaced from center by Xo, we have to apply a 
force f = F [v, X ] to balance the device’s restoring force f r .  
stable DC suspension, then f must, on the average, act s o  as to res tore  the block to 

center (x = 0). 

average of the applied force, < F [v, X ] >, must be such that 

If this device has achieved 
0 

Thus a necessary condition for  stable DC suspension is that the time 
r 

0 

> O ,  i f  X o > O  

= 0, i f  Xo = 0 

< 0 ,  if  Xo< 0 

0 In the vicinity of the center, the slope of the curve of the time average force v s  X 
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xo=o 

is called the stiffness coefficient of the device (by analogy between the device's r e s to ra -  
tive action and that of a spring)t3 For  DC stability, Eq. 317 shows that the device's 
stiffness coefficient must be positive. That is, 

DC stability - S > 0. (319) 

Equation 304 shows us that the time average of the force, which must be applied to the 
block in order to  make x = Xo, a constant, is 

p=o 

00 

p= 0 -- 

2,2p+l  where by F2, 2p+1(71, 72, 0 , .  . . , 0 )  we mean the inverse t ransform of F 
(sl, s2, 0, . . . , 01, and $v is the autocorrelation function of v. 

zero. 

f o r  the autocorrelation function of v in Eq. 320, then the result  is 

When (314) is evaluated at  s1 = 0, then it shows us  that the f t e r m  of (320) is 
0. 1 

When the inverse Fourier  transform of the spectral  function of v is substituted 

p=o -0e 
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Where F has regaineditsusual meaning. When Eqs. 311 - 313 and 315 are 
evaluated at  the appropriate frequencies, then the result is 

2,2p+l 

2 I G (jw) I 
2 R 2  g2p+2 

(- jo ,  +jo, 0, . . . 0) = - F2,2p+l  

P 

k= 0 

given by (322) is substituted in (321) and appropriate 2,2p+l When the expression for F 

reorderings of summation a r e  made, then the result is 

< f  > = < F  [v,Xo]> 

The stiffness coefficient of the device, Eq. 318, is thus 

00 
2 

Qv (jo) 1 G ( j 4  1 Re [ H(jo ) ] do. 
L 

2 2aR g2 
s = -  

0 

(323) 

(324) 

By inspection of either Eq. 323 o r  324, it is evident that if the device is to  achieve 

stable DC suspension (see Eq. 319), then the real  part  of the system function of the 
filter H must be negative over some frequency range. With reference to Fig. 43, it 
is then c l ea r  that the impedance In order  to 
maximize the stiffness of the device, the power of the input v should be concentrated 
a t  that frequency w where 1 G(jo) 1 

Z must contain at least one capacitor. 

R e  [H(jw)] is a minimum. Since G and H have 
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2 
the same poles, this frequency is higher than the frequency that maximizes I G(jw) 1 
but lower than the frequency that minimizes Re [H(jw)] . This forces  u s  to  “trade-off” 
between G and H in  order to  maximize S. 

We shall next study the device’s dynamic stability. 

7 . 4  A-C STABILITY 

Let u s  next consider AC block displacement signals (that is, x is a sum of 
sinusoids). F o r  this case, when we apply the force f = F[v, x] then we a r e  doing mech- 
anical work. The rate  at which we a r e  doing work is our mechanical input power 

(325) dx 
P = f x .  

If this device has  achieved stable AC suspension, then p must, on the average, be 
positive. 
from moving. 

That is, we must have to  work against the device’s efforts to  keep the block 

Equations 304 and 325 show that p is a functional of v and x. That is, 

where we shall choose 

Ro, p l ’ S 2 )  = 

and 

q= 1 

Fo, 2@1) s2 

The (0,2)-order  t e rm of p always has a non-negative average. 

0 
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That is, as long as there is some viscous mechanical damping (K # O ) ,  then it aids the 

AC suspension stability. 

might seem undesirable (e. g. ,  when the suspended block is the rotor of a gyro). 
order to  achieve stable AC suspension when K = 0, the t e rms  of p other than p 
have to  have positive averages. 

If v and x a r e  independent, then the time average of p 

For  some applications of this device, the presence of viscous mechanical damping 
In 
would 

0, 2 

is 
2, 2 

2 
= ,% jpx (jv) QV ( jw)  I G ( j 4  1 H(j[o  - u ] )  do dv 

8a R g 

Im [H(j[w - v])-H(j[o + v])]du dw. (330)  

* 
Consider a particular input x whose spectral function is 

*Integrated white Gaussian noise (a random walk) has  such a spectral  function. 
Strictly speaking, this function does not exist, but this mathematical flaw can be 
bypassed by deletion of the singular point at o = o .  
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where X1 and wo are any two positive constants with the dimensions of displacement 

and frequency, respectively. When (331) is substituted in (330) and the Hilbert trans- 
form 

is used to  relate the imaginary part  of f i l ter  H ' s  system function to i t s  rea l  part, then 
the result  is 

> = - w x  2 s, 
9 2 , 2  0 1  (333)  

where S is the device's stiffness coefficient (see Eq. 324).  

Equation 333 is highly significant. If the device is DC stable, then S is positive. 
If S is positive, then (333)  shows that there  is at least  one x (Eq. 331) such that 

< p2, 
< p > is negative. 
cause the power to sustain the block's movement is flowing out of the device rather  
than into it).  
the device, then i t s  magnetic suspension is unstable. 

> is negative. If K = 0, then there is some X1> 0 which is small  enough s o  that 
If < p > is negative for  some x, then the device is AC unstable (be- 

Thus (333) shows that: If viscous mechanical damping is not present in 

Since the device has now been shown to be either AC or  DC unstable whenever 
viscous mechanical damping is absent, then let u s  next determine just how much damp- 
ing is needed in order  for the device to  be both AC and DC stable. 

Under normal operating conditions, the input voltage v is a simple sinusoid. 

v = Re [VI exp ( j  wet)] . 

Then the voltage spectrum consists of a pair  of impulses 

(334)  

(335)  
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and the evaluation of (323) yields the fact that the time average force necessary to 
displace the device's block by Xo, a constant, is 

By substituting Eq. 335 in Eq. 324, we find that the stiffness coefficient is 

(337) 

The necessary condition for DC stability is then simply 

If the impedance Z is simply a capacitor C, a s  in Fig. 39, then Eq. 309 yields 

1 - w2 (LC - 4R2C2) Re [ H ( j 4 ]  = 
( L C W ~  - 1)2 + ( 2 R C d 2  ' 

Thus the device achieves DC stability whenever both 

L <z 
and 

1 
2 2 '  o 2  > 

e LC - 4R C 

(339) 

(340) 

(341) 

(incidentally, the conditions given by Eqs. 340 - 341 are strong enough so that the 

denominator of Eq. 336 (the time average force) can never go to zero). 
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2 
After (308) is solved for  lG(jwe)l then the stiffness coefficient can be found f rom 

13 (337) and(339). It is 

2 2  . 2  
LIVll [ a ( L C  - 4 R C - 13 S =  c1 ‘). (342) 

16ueg  2 2 R 4 C 2 [ [ “ “ : : - ’ ] L + l ] A  

Curves for Eqs.  336 and 342 have been plotted in F raz i e r  and Kingsley. 
Kingsley’s notation14 is 

F raz i e r  and 

In order to determine how much viscous mechanical camping is necessary to 
achieve both AC and DC stability when the input voltage is a simple sinusoid (see 
Eqs. 334 - 335), we shall consider displacement signals that a r e  a lso simple sinusoids. 

. .2  

Equation 329 evaluates to 

(344) 

(345) 

2 2  If oe # am, then (329) evaluates to  

2 
L I XlV1 I 2 

< P 2 , 2  > = w m (G(jw,) 1 I r n [ H ( j [ ~ , - ~ , l ) - H ( j [ ~ , + ~ ~ ] ) ] *  
1 6R2  g2 

(346) 
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If the device is to be AC stable, then Eqs. 345 - 346 show that as a necessary condition, 
for all om, K must be such that 

The Hilbert transform, Eq. 332, may be used to  demonstrate that the expression on 

the right of (347) is indeed positive as long as  the device is DC stable (see Eq. 338). 
Thus, Eq. 347 is the lower bound to the viscous mechanical damping which must 

be present in the device in order  for the magnetic suspension to  be stable. 
If the damping is l e s s  than the bound given by (347), then the suspension is unstable. 

7.5 FREE OSCILLATIONS 

Whenever K fails Eq. 347, then the device can exhibit self-sustained free oscilla- 
tions. If these oscillations are periodic 

x = Re [ X exp ( j n m  n (348) 

n= 0 

and the input voltage v is a simple sinusoid (Eq. 3341, then Eq. 304 shows that we and 
0 must be commensurate, m 

2 w  0 = kom; k an integer, (349) 

in order  for these oscillations to  be force free (if  the frequencies do not satisfy Eq. 
349, then the frequency components present in Eq. 304 could not balance so  as to  sum 
to ze ro  force for all  time). The power to drive these oscillations is being provided 

(and the higher order  t e rms)  which involves Im [H(jw)]. When the impedance by p2,2 
Z is simply a capacitor C ,  as in Fig. 39, then Eq. 309 yields 

- z w 3  RLC' 
Im [ H(jo)] = 

(LC m2 - 1)2 + ( ~ R C U ) ~  

If the f i r s t  harmonic of x dominates, then (346) and (350) show that p 
power to  the oscillations most strongly whenever 

wi l l  contribute 
2, 2 
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Equations 349 and 351 then show that 

2 0  - e 2 0  e k =  - 

we - we - '"0 

w k  
'v 0 0 = -  

e k - 2  -k-2 

2 0  2 w 6  0 
"m=k-2-'k-2' 

(351) 

(352) 

(353) 

(354) 

If the third harmonic of x dominates, then instead of Eq. 351, we must write 

- 1  - 
0 - 3wm = w6 = - 

IILF - 0°' 
e 

and then 

w k  - 0 0 = - =  
e k - 6  k-6 

(355) 

(356) 

(357) 

Equations 349 - 358 predict certain properties of the magnetic suspension device's 
These predictions have been verified self-sustained periodic oscillatory instabilities. 

experimentally. 

presented in Appendix A. 
physically. 

The results of these experimental confirmations of Eqs. 349 - 358 a r e  
The device's self- sustained oscillations can also be explained 
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7 . 6  PHYSICAL EXPLANATION OF THE FREE OSCILLATIONS 

The magnetic suspension device’s self- sustained oscillations can be explained 
physically by the phase shift of f i l ter  H. The frequency response of filter H is 

where Re [H(jw)] and Im [H(jw)] a r e  given by Eqs. 339 and 350, and I H(jw) I and d(u) 
a r e  graphed in Fig. 45 .  

! I 

\ I  
\ I  

Fig. 45.  Frequency response of H(ju). 

By Eq. 341, the condition for DC stability is 

1 w >  

“ d - F z V  

which, by Fig. 45, is equivalent to 
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Note from Fig 45 that we must be past the resonant peak of I H(jo) 1 .  
When we satisfies (360) or  (361) and x is either a simple sinusoid (Eq. 343) or  a 

periodic function (Eq. 348) whose f i rs t  harmonic dominates, then the line spectrums 
of v, x, X, 6, and u, given by Fig. 46, follows from Fig. 44. That is, the input v 
(Eq. 334) gives X a dominant component at we. 

X =: Re [ Aexp (jwet)]. (362) 

%m we -we -30, -urn 

-we - w e +  2% w.-% oe 

'e ' 0, -we - urn - we ' w, w - w, 

" 

W 

we-2w, we 

Fig. 46. Line spectrum of f ree  oscillations. 

The product xX, therefore, has dominant components at w + w and w - w The 

component of xA at w + w is farther past the resonent peak 07 H(jw) 7 than we was,  

but the component at w - w - e m - w 6  
see  Eq. 351). Thus when XX passes  through(l/g)H to  form 6 (see Fig. 44), then the 
dominant component of 6 is at we 

e m' 
e m  

can be near the peak of I H(jw) I .  (That is, w6 =: wo, 

,r 
- = w 6 '  

(363) 

The product x6, therefore, has dominant components at we and we - 2 am. 

components are  nearly centered about the peak of 1 H(jw) 1. 
These two 

Thus when x 6 passes  

*In those cases in which x is periodic and i ts  kth harmonic dominates, we - kwm is 
near the peak of 1 H(jo) I. (See Eq. 355. ) 
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through (l/g)H to form u, the fed-back signal, then u contributes one component which 
reinforces the dominant component of 
w - 2 w  

at we and one subsidiary component of X at 

e m' 
By Eqs. 289, 362, and 363, the device's  restoring force, f r ,  is 

Equation 364 shows that the component of the device's  restoring force at wm has  a 

phase sh i l t ,  reiaiive to x, of -P (w6) .  With reference to Fig. 45 and Eq. 361, the range 

of this phase shift is 

o < - 9 ( w 6 )  < - e ( w e )  < T (365) 

which is shown in Fig. 47. 

OVERLAP 7 

RANGE OF - m i  

Fig. 47. Phase angles of -A6 and jw(joM+K). 

If we rewrite Eq. 298 a s  

dx 
dt 

d u  2 
f + f  = M  - + K -, 

r dt2 

then we see  that the phase shift, relative to x ,  because of the block's m a s s  and the 

viscous mechanical damping K,  i s  given by the polynominal -urn" t jam K and has  a 
2 
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range from a / 2  to  IT, as is a l so  shown in  Fig. 47. 
ranges overlap. 
+ k (dx/dt) in Eq. 366 when 

Figure 47 shows that these two 
2 2  component of f to  balance M (d x/dt ) Thus it is possible for  the 0 

m r 

a -a < e ( w e )  < e (w , )  < - 7 .  

That is ,  when wm is such that 

(367) 

then the device's restoring force can balance the block's mechanical forces ,  even 
though f = 0 (see Eq. 366). 
when the damping is insufficient. 
oscillations is given by Eq.  347. 
the phase-angle argument that w e  have just completed) is in the fact that Fig. 47 te l ls  
only half of the story. That is, even when there is a phase-angle balance between the 
device's restoring force and the block's mechanical forces, this does not prove that f 

can be ze ro  (force-free oscillations) unless their  amplitudes a l so  balance. 
large enough to  satisfy (347) for  all  wm in the range of (368), then this amplitude balance 
is prevented and the device's oscillatory instabilities are overcome. 

This is the physical basis of the device's free oscillations 
The bound upon the damping which will inhibit these 
The physical basis for  that bound (which is not due to 

If K is 
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VIXI. CONCLUSION 

If a system's  behavior can b e  characterized by a differential, integral, or  integro- 
differential equation, and if solutions t o  that equation exist, are unique (for a given in- 
put), time-invariant and "smooth" enough so  that certain limits exist, then that system 
is an  analytic system and i t s  output can be expressed as a Volterra series of its input. 
If the system's  characterist ic equation ( o r  equations) is (are) in the appropriate form, 
then that system's Volterra s e r i e s  can be found, in a few steps,  by our inspection 
technique (developed here in Section 111). If the characteristic equation is not in an 
appropriate form, i t  can usually be rewritten in  an  appropriate form by multiplying 
through to  eliminate those t e r m s  that represent division (division is not the resu1.t of 

an  operation by an  analytic system) by one of the system's  variables, (e. g . ,  Eq. 6 8  

rewritten as Eq. 7 2 ) .  

An analytic system's  V d t e r r a  se r i e s  is a fiinctional characterization of that sys-  
tem's  behavior. This functional characterization of the system Is useful because (i) it 

can lead to  interesting syntheses of that system, (ii) it is an  explicit statement. of that 
system's  output for an  a rb i t ra ry  input (perhaps for an  a rb i t ra ry  input from within a 

class of inputs), and (iii) f rom it we can compute that system's  output for  particular 
inputs. 
signal (Eqs. 184 - 192)," 
nal (148 - 149), an exponential-step input signal (Eqs. 243 - 2811, an unknown input 
signal whose autocorrelation w a s  known (Eqs. 320 - 323), and a stochastic input signal. 
The example of the computation of a system's  output (or  rather the statist ical  expecta- 
tion of that system's  output) when the input signal is stochastic, f rom the system's  
functional characterization, is of special interest because such computations may not 
be possible f rom the system's  differential equation characterization. 

Some examples of such computations that we have seen were for  a DC input 
an  AC input signal (Eqs. 150  - 160) ,  an exponential input sig- 

The functional characterization of an  analytic system by a Volterra s e r i e s  i s  not 
It need not without disadvantages. 

always be an infinite s e r i e s  (e. g . ,  Eq. 99)  and even when it is an infinite s e r i e s  we may 
be able to  find a closed form for  i t s  evaluation (e. g. ,  Eq. 3 2 3 ) ,  but usually we are 

forced to  approximate it by a finite number of t e rms .  When we approximate a Volterra 
series by a finite number of i ts  t e rms ,  then we should compute a bound upon the trunca- 

tion e r r o r  that w e  have introduced (e. g . ,  Eq. 21 0), but finding such a bound can be 
very difficult. 

The Volterra se r ies  is usually an  infinite se r ies .  

The extension of the work presented in this report  to  non-analytic systems i s  
questionable. W e  suppose that, faced with a nonlinear differential equation that did 

:kThe computation of the output for  DC input signals should always be made. It is simple 
and it s e rves  as  a useful check on the solutions and the convergence of the series. 
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not characterize an  analytic system (e. g . ,  Eqs. 123 - 125),  then we could use the 
inspection technique to  get ' 'an answer", but the meaning, i f  any, of such "an answer" 
is doubtful. 
easy. That is, given a nonlinear differential equation, w e  may be tempted to  evade the 
hard work of testing it to  s ee  if  it characterizes an  analytic system and, rashly assum- 
ing that it does, proceed to  use our inspection technique to  find'hn answer". If the differ-  

ential equation did not characterize an analytic system, then our "answer" can be 
grossly erroneous and misleading. 

This is one of the disadvantages of our inspection technique - it is too 

Additional research is needed on the problem of testing a differential equation in 
order to  determine i f  i t  characterizes an  analytic system. 
hard. 
too often, a uniqueness proof has to  be invented fo r  each particular differential equation. 
The proof of time-invariance, once existence and uniqueness have been shown, is 

usually trivial. 
time through Volterra 's  definition (that is, by showing from l imits  of small  perturba- 
tions of the input about ze ro  that all of Vol te r ra ' s  functional derivatives exist a t  zero), 
is  fa r  too tedious to  use. A s  has been said, once existence, uniqueness, and t ime- 
invariance have been established, then it is eas i e r  to  use our inspection technique to  
find a Volterra s e r i e s  solution, i f  there is one. 
show that it converges absolutely, then because of uniqueness, we have shown analyti- 
city. 

The known t e s t s  are too 

The three major knownexistence theorems can be quite difficult t o  apply. A l l  

The proof that the system's  functional is analytic at some instant Of 

If w e  get an  answer, and if w e  can 

A simpler s e r i e s  of tes t s  than these would be extremely useful. 
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APPENDIX A 

SELF-SUSTAINED OSCILLATIONS O F  A MAGNETIC 
SUSPENSION DEVICE EXPERIMENTALLY VERIFIED 

We shall present the experimental verification of the predictions in Section VI1 

Figure A-1  is a sketch of the suspension device upon which the measurements pre-  

The device consisted of a s teel  rotor (the suspended block) on 
Two orthogonal single-axis 

concerning the self-sustained oscillations of a magnetic suspension device. 

sented here  were made. 
a shaft set  into a pivot bearing for the vertical suspension. 
suspension devices provided the horizontal suspension of the device. 
measure the device's static parameters,  the current i (see Fig. A-2 and Fig. 41)  w a s  
monitored with paper shims inserted in the gaps (g = 0. 006") to fix the block displace- 
ment at zero. When x = 0, then it can be shown from Eqs. 290, 299, 303, and 310 that 

* 

In order  to 

2V(s)  = [ Z(s )  + 2R + sL] I(s) .  

ROTOR 

, COIL COIL I 

STATOR 

COIL 

22K 

f 

COIL 

~ SHAFT 

W 

Fig. A-1. The suspension device. Fig. A-2. Electrical  schematic diagram 
of the suspension device. 

*Professor R. H. F raz i e r  and Mr.  P. J. Gilinson, J r . ,  of the Instrumentation Labora- 
tory, M. I. T . ,  provided the suspension device and the facilities at which the author, 
with the assistance of Mr. J. Scoppettuolo, conducted these experiments during the 
ea r ly  part  of June 1965. 
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From the tabulation of the relative phase angles between v and i, given in Table A-1, 

we can determine w L, and R. They a r e  0' 

1 -  6. 103 radians w =  
O G  s e c  

L = 0. 273 H (A. 3 )  

R =  1 0 3 9  . (A. 4 )  

Table A- 1. Measurements to determine the system parameters.  

Frequency of v, Frequency of v, Frequency of v, Relative Phase According to According to According to Angle of v and i Oscillator Dial Oscilloscope E -put Meter 

3 5 "  1. 0 1. 0 0 . 9 9 9 4  

1 . 0 2 1 2  

1. 0971 

46 '  1. 02 1. 0 5  

67 '  1 .1  1. 1 

Al l  frequencies in kilo-cycles-per-second, Z ( s )  = , c =  0 . 1 p f .  

The paper shims were then removed and v w a s  made large enough so that self-  
sustained oscillations along the x-axis ensued (the y-axis v was set  s o  that there was 
no oscillation along the y-axis). Three signals were then monitored: v, the input volt- 

age to the x-axis suspension device; vs, the stator voltage (which shows when the rotor 
is touching the s ta tor  (see Fig. A-1));  and vB, the bridge voltage (shown in Figs. A-2 
and 41).  because it provides information 

about the mean-difference flux linkage 6 .  

295, and 299 - 300 that 

It is usefu l  to monitor the bridge voltage, v B' 
That is, it can be shown from Eqs. 291  - 

A ( s )  
4 s Z ( s )  

2R + Z ( s )  V,(S) = - 

Equation A. 5 demonstrates that the bridge voltage contains the same frequencies as 6. 

observations of the magnetic suspension device's sulf-sustained oscillations. Repro- 

ductions of the photographs of four of these observations a r e  presented as exhibits 
here. 

Oscilloscope photographs of the three signals, v, vs, and vB recorded nine separate 

1 0 0  



A. 1 INTERPRETATION OF EXHIBITS 

If the reader  will take a sheet of paper and mark  an interval on i t s  edge that is as 
long as the black line under the text for  v(t) in Exhibit A, then he wi l l  find that that inter-  
val  is as long as (i) 5 periods of v, (ii) 4 periods of vs, (iii) 3 cycles of vB, and (iv) one 
fundamental period of vB (the interval between the two highest peaks). 
ment, the rotor w a s  hitting the stator twice each period of the mechanical oscillation 
(that is ,  it hit once per  side). 

In this experi- 

Exhibit A thus demonstrates that 

which verifies Eq. 349 and shows that k = 5 in this observation of the device's self- 
sustained oscillations. 
on line 1 of Table *I-?. 

The verifications of Eqs. 351 - 354 by Exhibit A are tabulated 

In Exhibit B, the reader  wi l l  find that the length of the black line under the text for 
v(t) equals the length of (i) 9 periods of v, (ii) 4 periods of vs, and (iii) 1 fundamental 
period of vB. 
period). 

The rotor was hitting the stator once per side (twice per mechanical 

Exhibit B thus demonstrates that 

1 

60 
-- - - - - -  6. 5 msec  - 9 - 2 

w w 3 

e m 277 (A. 7 )  

which verifies Eq. 349 and shows that k = 9 in this observation. 
r ich in harmonics to observe w 6  directly, but Eq. 351 can be verified indirectly by 
Eq. A. 7. That is, 

The signal vB is too 

18n 4 n  
- 6. 5 msec  6 .5  msec  

3 radians = 6 . 8 X  10 

which verifies Eq. 351 (via Eq. A. 2). The verifications of Eqs. 351 - 354 by Exhibit 

B are tabulated on line 5 of Table A-2. 
In Exhibit C, the reader  wi l l  find that the length of the black line under the text for 

v(t) equals the length of (i) 11 periods of v, (ii) 3 intervals of vs, and (iii) 1 fundamental 
period of vB. 
symmetry  in the waveform) and a longer sequence of pictures (not included here) shows 
the occasional presence of one more contact per  this length. 
vS shown in Exhibit C really represent 2 mechanical periods. 
s t  r ate s that 

The rotor was hitting the stator erratically (as is seen by the lack of 

Thus the 3 intervals of 
Exhibit C thus demon- 
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Exhibit A. Self- sustained 5:2 oscillation. 
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Exhibit B. Self-sustained 9:2 oscillation. 

Y-axis bridge voltage signal , 

rnSec ) ( l O = ) X ( 1 -  
V 

v ( t ) ,  (20-- )x(  V 1==)  
crn 

Y-axis input voltage signal, 

1 V 
( 2 o x  ) x ( 1 7 
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Exhibit C. Self-sustained 11:2 oscillation. 

104 

Y -  axis bridge voltage signal , 

Y- axis input voltage signal , 

InSec ) ( 2 0 ~ ) X ( 1 ~  
V 



8.3 msec  = 11 - - 2 = 1 
60 w 0 e m 27 

which verifies Eq. 349 and shows that k = 11 in this observation. 

verified indirectly by 

AS before, Eq. 351 is 

e m  

- 227 - 47T 
8 .3  msec  8.3 msec  

(A. 10) 3 radians = 6 . 8 X  10 

The verifications of Eqs. 351 - 354 by Exhibit C a r e  tabulated on line 7 of Table A-2. 

Table A-2. Experimental results - f i rs t  harmonic dominant. 

M Frequencies in 
k=--- =a -a kilo-radians 

m e 0  per second 

- 2 y )  
Q =- _ k w o  w =- m k-2 w - 0  - w  6 e m Z w 0  e k-2  

(meas) (pred) (meas) (pred) (meas) (pred) (meas) ( p e d )  Remarks 
~ ~ 

10.5 10.2 4.2 4. 1 5 4. 8 6. 3 6. 1 Exhibit A 

10. 5 10.2 4.2 4. 1 5 4. 8 6 .3  6. 1 1/2 Voltage 

10. 5 10.2 4.2 4. 1 5 4. 8 6. 3 6. 1 Off center 

10. 2 10.2 4 . 1  4. 1 5 5. 0 6.1 6. 1 Not hitting 

8. 7 7. 9 1. 9 1.7 9 6. 7 6. 8 6. 1 Exhibit B ~ 

8. 5 7. 9 1. 8 1. 7 9 7. 1 6. 7 6. 1 Lower frequency 

8. 3 7. 5 1. 5 1 .4  11 7. 6 6. 8 6. 1 Exhibit C 

In Exhibit D, the reader  w i l l  find that the length of the black line under the text for 
v(t) equals the length of (i) 19 periods of v, (ii) 8 periods of vs (N. B. the change of time 
calibration), and (iii) 1 fundamental period of vB. 
t imes each mechanical period (the third harmonic of x was dominant). 
demonstrates that 

The rotor was hitting the s ta tor  4 
Exhibit D thus 
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Exhibit D. Self-sustained 19:2 oscillation. 
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rnSec ) 
V 
crn crn 

v ( t ) ,  (20 - ) x ( 2 - 

v ( t )  , (20 cm V ) x (0.5 e) 
crn 

) 
rnsec (10 - ) X (0.5 - "B ( t )  

crn crn 

Y-axis bridge voltage signal , 

( 10 - )  x (0.5- rnSec ) 
V 
crn crn 



which verifies Eq. 349 and shows that k = 1 9  in this observation. 
three exhibits, in this case the third harmonic of x dominated. 
Eq. 355 indirectly via Eq. A. 11. That is, 

Unlike the preceding 
Thus we can verify 

w 6 =  w - 3 w  e m 

- 38% - 1 2 7  
12 .  5 msec  12 .  5 msec  

3 radians = 6. 5 X  10 . (A. 1 2 )  

The verification of Eqs. 355 - 358 are tabulated on line 1 of Table A-3. 

This is so because the denominator of the formula for k is of the same order  of magni- 
tude as the approximation w 6  = w 

It wi l l  be noted in Tables A-2 and A-3 that the crudest predictions a r e  those of k. 

0’ 

Table A-3. Experimental results - third harmonic dominant. 

6 0  
2 w e e  e -30  40 

ko 2 u 0  
(Li - 0  =- w ?- k=--- 0 = W  

e k-6 m k-6 0 0 -0 d e  m O  m e 0  

(meas)  (pred) (meas) (pred) (meas) (pred) (meas) (meas) Remarks 

9. 5 8. 9 1 . 0  0.94 1 9  16. 8 6. 5 6. 1 Exhibit D 

9. 45 8. 9 1 .00  0.94 19 17.0 6.45 6. 1 Lower frequency 

(All frequencies in kilo-radians -per- second) 
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